Step |
Hyp |
Ref |
Expression |
1 |
|
2z |
|- 2 e. ZZ |
2 |
|
1lt2 |
|- 1 < 2 |
3 |
|
eluz2b1 |
|- ( 2 e. ( ZZ>= ` 2 ) <-> ( 2 e. ZZ /\ 1 < 2 ) ) |
4 |
1 2 3
|
mpbir2an |
|- 2 e. ( ZZ>= ` 2 ) |
5 |
|
ral0 |
|- A. z e. (/) -. z || 2 |
6 |
|
fzssuz |
|- ( 2 ... ( 2 - 1 ) ) C_ ( ZZ>= ` 2 ) |
7 |
|
df-ss |
|- ( ( 2 ... ( 2 - 1 ) ) C_ ( ZZ>= ` 2 ) <-> ( ( 2 ... ( 2 - 1 ) ) i^i ( ZZ>= ` 2 ) ) = ( 2 ... ( 2 - 1 ) ) ) |
8 |
6 7
|
mpbi |
|- ( ( 2 ... ( 2 - 1 ) ) i^i ( ZZ>= ` 2 ) ) = ( 2 ... ( 2 - 1 ) ) |
9 |
|
uzdisj |
|- ( ( 2 ... ( 2 - 1 ) ) i^i ( ZZ>= ` 2 ) ) = (/) |
10 |
8 9
|
eqtr3i |
|- ( 2 ... ( 2 - 1 ) ) = (/) |
11 |
10
|
raleqi |
|- ( A. z e. ( 2 ... ( 2 - 1 ) ) -. z || 2 <-> A. z e. (/) -. z || 2 ) |
12 |
5 11
|
mpbir |
|- A. z e. ( 2 ... ( 2 - 1 ) ) -. z || 2 |
13 |
|
isprm3 |
|- ( 2 e. Prime <-> ( 2 e. ( ZZ>= ` 2 ) /\ A. z e. ( 2 ... ( 2 - 1 ) ) -. z || 2 ) ) |
14 |
4 12 13
|
mpbir2an |
|- 2 e. Prime |