| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2wlkd.p |  |-  P = <" A B C "> | 
						
							| 2 |  | 2wlkd.f |  |-  F = <" J K "> | 
						
							| 3 |  | 2wlkd.s |  |-  ( ph -> ( A e. V /\ B e. V /\ C e. V ) ) | 
						
							| 4 |  | 2wlkd.n |  |-  ( ph -> ( A =/= B /\ B =/= C ) ) | 
						
							| 5 | 1 2 3 | 2wlkdlem3 |  |-  ( ph -> ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) ) | 
						
							| 6 |  | simpl |  |-  ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) -> ( P ` 0 ) = A ) | 
						
							| 7 |  | simpr |  |-  ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) -> ( P ` 1 ) = B ) | 
						
							| 8 | 6 7 | neeq12d |  |-  ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) -> ( ( P ` 0 ) =/= ( P ` 1 ) <-> A =/= B ) ) | 
						
							| 9 | 8 | bicomd |  |-  ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) -> ( A =/= B <-> ( P ` 0 ) =/= ( P ` 1 ) ) ) | 
						
							| 10 | 9 | 3adant3 |  |-  ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) -> ( A =/= B <-> ( P ` 0 ) =/= ( P ` 1 ) ) ) | 
						
							| 11 | 10 | biimpcd |  |-  ( A =/= B -> ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) -> ( P ` 0 ) =/= ( P ` 1 ) ) ) | 
						
							| 12 | 11 | adantr |  |-  ( ( A =/= B /\ B =/= C ) -> ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) -> ( P ` 0 ) =/= ( P ` 1 ) ) ) | 
						
							| 13 | 12 | imp |  |-  ( ( ( A =/= B /\ B =/= C ) /\ ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) ) -> ( P ` 0 ) =/= ( P ` 1 ) ) | 
						
							| 14 | 13 | a1d |  |-  ( ( ( A =/= B /\ B =/= C ) /\ ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) ) -> ( 0 =/= 1 -> ( P ` 0 ) =/= ( P ` 1 ) ) ) | 
						
							| 15 |  | eqid |  |-  1 = 1 | 
						
							| 16 |  | eqneqall |  |-  ( 1 = 1 -> ( 1 =/= 1 -> ( P ` 1 ) =/= ( P ` 1 ) ) ) | 
						
							| 17 | 15 16 | mp1i |  |-  ( ( ( A =/= B /\ B =/= C ) /\ ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) ) -> ( 1 =/= 1 -> ( P ` 1 ) =/= ( P ` 1 ) ) ) | 
						
							| 18 |  | simpr |  |-  ( ( ( P ` 1 ) = B /\ ( P ` 2 ) = C ) -> ( P ` 2 ) = C ) | 
						
							| 19 |  | simpl |  |-  ( ( ( P ` 1 ) = B /\ ( P ` 2 ) = C ) -> ( P ` 1 ) = B ) | 
						
							| 20 | 18 19 | neeq12d |  |-  ( ( ( P ` 1 ) = B /\ ( P ` 2 ) = C ) -> ( ( P ` 2 ) =/= ( P ` 1 ) <-> C =/= B ) ) | 
						
							| 21 |  | necom |  |-  ( C =/= B <-> B =/= C ) | 
						
							| 22 | 20 21 | bitr2di |  |-  ( ( ( P ` 1 ) = B /\ ( P ` 2 ) = C ) -> ( B =/= C <-> ( P ` 2 ) =/= ( P ` 1 ) ) ) | 
						
							| 23 | 22 | 3adant1 |  |-  ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) -> ( B =/= C <-> ( P ` 2 ) =/= ( P ` 1 ) ) ) | 
						
							| 24 | 23 | biimpcd |  |-  ( B =/= C -> ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) -> ( P ` 2 ) =/= ( P ` 1 ) ) ) | 
						
							| 25 | 24 | adantl |  |-  ( ( A =/= B /\ B =/= C ) -> ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) -> ( P ` 2 ) =/= ( P ` 1 ) ) ) | 
						
							| 26 | 25 | imp |  |-  ( ( ( A =/= B /\ B =/= C ) /\ ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) ) -> ( P ` 2 ) =/= ( P ` 1 ) ) | 
						
							| 27 | 26 | a1d |  |-  ( ( ( A =/= B /\ B =/= C ) /\ ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) ) -> ( 2 =/= 1 -> ( P ` 2 ) =/= ( P ` 1 ) ) ) | 
						
							| 28 | 14 17 27 | 3jca |  |-  ( ( ( A =/= B /\ B =/= C ) /\ ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) ) -> ( ( 0 =/= 1 -> ( P ` 0 ) =/= ( P ` 1 ) ) /\ ( 1 =/= 1 -> ( P ` 1 ) =/= ( P ` 1 ) ) /\ ( 2 =/= 1 -> ( P ` 2 ) =/= ( P ` 1 ) ) ) ) | 
						
							| 29 | 4 5 28 | syl2anc |  |-  ( ph -> ( ( 0 =/= 1 -> ( P ` 0 ) =/= ( P ` 1 ) ) /\ ( 1 =/= 1 -> ( P ` 1 ) =/= ( P ` 1 ) ) /\ ( 2 =/= 1 -> ( P ` 2 ) =/= ( P ` 1 ) ) ) ) | 
						
							| 30 | 1 | fveq2i |  |-  ( # ` P ) = ( # ` <" A B C "> ) | 
						
							| 31 |  | s3len |  |-  ( # ` <" A B C "> ) = 3 | 
						
							| 32 | 30 31 | eqtri |  |-  ( # ` P ) = 3 | 
						
							| 33 | 32 | oveq2i |  |-  ( 0 ..^ ( # ` P ) ) = ( 0 ..^ 3 ) | 
						
							| 34 |  | fzo0to3tp |  |-  ( 0 ..^ 3 ) = { 0 , 1 , 2 } | 
						
							| 35 | 33 34 | eqtri |  |-  ( 0 ..^ ( # ` P ) ) = { 0 , 1 , 2 } | 
						
							| 36 | 35 | raleqi |  |-  ( A. k e. ( 0 ..^ ( # ` P ) ) ( k =/= 1 -> ( P ` k ) =/= ( P ` 1 ) ) <-> A. k e. { 0 , 1 , 2 } ( k =/= 1 -> ( P ` k ) =/= ( P ` 1 ) ) ) | 
						
							| 37 |  | c0ex |  |-  0 e. _V | 
						
							| 38 |  | 1ex |  |-  1 e. _V | 
						
							| 39 |  | 2ex |  |-  2 e. _V | 
						
							| 40 |  | neeq1 |  |-  ( k = 0 -> ( k =/= 1 <-> 0 =/= 1 ) ) | 
						
							| 41 |  | fveq2 |  |-  ( k = 0 -> ( P ` k ) = ( P ` 0 ) ) | 
						
							| 42 | 41 | neeq1d |  |-  ( k = 0 -> ( ( P ` k ) =/= ( P ` 1 ) <-> ( P ` 0 ) =/= ( P ` 1 ) ) ) | 
						
							| 43 | 40 42 | imbi12d |  |-  ( k = 0 -> ( ( k =/= 1 -> ( P ` k ) =/= ( P ` 1 ) ) <-> ( 0 =/= 1 -> ( P ` 0 ) =/= ( P ` 1 ) ) ) ) | 
						
							| 44 |  | neeq1 |  |-  ( k = 1 -> ( k =/= 1 <-> 1 =/= 1 ) ) | 
						
							| 45 |  | fveq2 |  |-  ( k = 1 -> ( P ` k ) = ( P ` 1 ) ) | 
						
							| 46 | 45 | neeq1d |  |-  ( k = 1 -> ( ( P ` k ) =/= ( P ` 1 ) <-> ( P ` 1 ) =/= ( P ` 1 ) ) ) | 
						
							| 47 | 44 46 | imbi12d |  |-  ( k = 1 -> ( ( k =/= 1 -> ( P ` k ) =/= ( P ` 1 ) ) <-> ( 1 =/= 1 -> ( P ` 1 ) =/= ( P ` 1 ) ) ) ) | 
						
							| 48 |  | neeq1 |  |-  ( k = 2 -> ( k =/= 1 <-> 2 =/= 1 ) ) | 
						
							| 49 |  | fveq2 |  |-  ( k = 2 -> ( P ` k ) = ( P ` 2 ) ) | 
						
							| 50 | 49 | neeq1d |  |-  ( k = 2 -> ( ( P ` k ) =/= ( P ` 1 ) <-> ( P ` 2 ) =/= ( P ` 1 ) ) ) | 
						
							| 51 | 48 50 | imbi12d |  |-  ( k = 2 -> ( ( k =/= 1 -> ( P ` k ) =/= ( P ` 1 ) ) <-> ( 2 =/= 1 -> ( P ` 2 ) =/= ( P ` 1 ) ) ) ) | 
						
							| 52 | 37 38 39 43 47 51 | raltp |  |-  ( A. k e. { 0 , 1 , 2 } ( k =/= 1 -> ( P ` k ) =/= ( P ` 1 ) ) <-> ( ( 0 =/= 1 -> ( P ` 0 ) =/= ( P ` 1 ) ) /\ ( 1 =/= 1 -> ( P ` 1 ) =/= ( P ` 1 ) ) /\ ( 2 =/= 1 -> ( P ` 2 ) =/= ( P ` 1 ) ) ) ) | 
						
							| 53 | 36 52 | bitri |  |-  ( A. k e. ( 0 ..^ ( # ` P ) ) ( k =/= 1 -> ( P ` k ) =/= ( P ` 1 ) ) <-> ( ( 0 =/= 1 -> ( P ` 0 ) =/= ( P ` 1 ) ) /\ ( 1 =/= 1 -> ( P ` 1 ) =/= ( P ` 1 ) ) /\ ( 2 =/= 1 -> ( P ` 2 ) =/= ( P ` 1 ) ) ) ) | 
						
							| 54 | 29 53 | sylibr |  |-  ( ph -> A. k e. ( 0 ..^ ( # ` P ) ) ( k =/= 1 -> ( P ` k ) =/= ( P ` 1 ) ) ) | 
						
							| 55 | 2 | fveq2i |  |-  ( # ` F ) = ( # ` <" J K "> ) | 
						
							| 56 |  | s2len |  |-  ( # ` <" J K "> ) = 2 | 
						
							| 57 | 55 56 | eqtri |  |-  ( # ` F ) = 2 | 
						
							| 58 | 57 | oveq2i |  |-  ( 1 ..^ ( # ` F ) ) = ( 1 ..^ 2 ) | 
						
							| 59 |  | fzo12sn |  |-  ( 1 ..^ 2 ) = { 1 } | 
						
							| 60 | 58 59 | eqtri |  |-  ( 1 ..^ ( # ` F ) ) = { 1 } | 
						
							| 61 | 60 | raleqi |  |-  ( A. j e. ( 1 ..^ ( # ` F ) ) ( k =/= j -> ( P ` k ) =/= ( P ` j ) ) <-> A. j e. { 1 } ( k =/= j -> ( P ` k ) =/= ( P ` j ) ) ) | 
						
							| 62 |  | neeq2 |  |-  ( j = 1 -> ( k =/= j <-> k =/= 1 ) ) | 
						
							| 63 |  | fveq2 |  |-  ( j = 1 -> ( P ` j ) = ( P ` 1 ) ) | 
						
							| 64 | 63 | neeq2d |  |-  ( j = 1 -> ( ( P ` k ) =/= ( P ` j ) <-> ( P ` k ) =/= ( P ` 1 ) ) ) | 
						
							| 65 | 62 64 | imbi12d |  |-  ( j = 1 -> ( ( k =/= j -> ( P ` k ) =/= ( P ` j ) ) <-> ( k =/= 1 -> ( P ` k ) =/= ( P ` 1 ) ) ) ) | 
						
							| 66 | 38 65 | ralsn |  |-  ( A. j e. { 1 } ( k =/= j -> ( P ` k ) =/= ( P ` j ) ) <-> ( k =/= 1 -> ( P ` k ) =/= ( P ` 1 ) ) ) | 
						
							| 67 | 61 66 | bitri |  |-  ( A. j e. ( 1 ..^ ( # ` F ) ) ( k =/= j -> ( P ` k ) =/= ( P ` j ) ) <-> ( k =/= 1 -> ( P ` k ) =/= ( P ` 1 ) ) ) | 
						
							| 68 | 67 | ralbii |  |-  ( A. k e. ( 0 ..^ ( # ` P ) ) A. j e. ( 1 ..^ ( # ` F ) ) ( k =/= j -> ( P ` k ) =/= ( P ` j ) ) <-> A. k e. ( 0 ..^ ( # ` P ) ) ( k =/= 1 -> ( P ` k ) =/= ( P ` 1 ) ) ) | 
						
							| 69 | 54 68 | sylibr |  |-  ( ph -> A. k e. ( 0 ..^ ( # ` P ) ) A. j e. ( 1 ..^ ( # ` F ) ) ( k =/= j -> ( P ` k ) =/= ( P ` j ) ) ) |