Step |
Hyp |
Ref |
Expression |
1 |
|
2wlkd.p |
|- P = <" A B C "> |
2 |
|
2wlkd.f |
|- F = <" J K "> |
3 |
|
2wlkd.s |
|- ( ph -> ( A e. V /\ B e. V /\ C e. V ) ) |
4 |
|
2wlkd.n |
|- ( ph -> ( A =/= B /\ B =/= C ) ) |
5 |
1 2 3
|
2wlkdlem3 |
|- ( ph -> ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) ) |
6 |
|
simpl |
|- ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) -> ( P ` 0 ) = A ) |
7 |
|
simpr |
|- ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) -> ( P ` 1 ) = B ) |
8 |
6 7
|
neeq12d |
|- ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) -> ( ( P ` 0 ) =/= ( P ` 1 ) <-> A =/= B ) ) |
9 |
8
|
bicomd |
|- ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) -> ( A =/= B <-> ( P ` 0 ) =/= ( P ` 1 ) ) ) |
10 |
9
|
3adant3 |
|- ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) -> ( A =/= B <-> ( P ` 0 ) =/= ( P ` 1 ) ) ) |
11 |
10
|
biimpcd |
|- ( A =/= B -> ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) -> ( P ` 0 ) =/= ( P ` 1 ) ) ) |
12 |
11
|
adantr |
|- ( ( A =/= B /\ B =/= C ) -> ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) -> ( P ` 0 ) =/= ( P ` 1 ) ) ) |
13 |
12
|
imp |
|- ( ( ( A =/= B /\ B =/= C ) /\ ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) ) -> ( P ` 0 ) =/= ( P ` 1 ) ) |
14 |
13
|
a1d |
|- ( ( ( A =/= B /\ B =/= C ) /\ ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) ) -> ( 0 =/= 1 -> ( P ` 0 ) =/= ( P ` 1 ) ) ) |
15 |
|
eqid |
|- 1 = 1 |
16 |
|
eqneqall |
|- ( 1 = 1 -> ( 1 =/= 1 -> ( P ` 1 ) =/= ( P ` 1 ) ) ) |
17 |
15 16
|
mp1i |
|- ( ( ( A =/= B /\ B =/= C ) /\ ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) ) -> ( 1 =/= 1 -> ( P ` 1 ) =/= ( P ` 1 ) ) ) |
18 |
|
simpr |
|- ( ( ( P ` 1 ) = B /\ ( P ` 2 ) = C ) -> ( P ` 2 ) = C ) |
19 |
|
simpl |
|- ( ( ( P ` 1 ) = B /\ ( P ` 2 ) = C ) -> ( P ` 1 ) = B ) |
20 |
18 19
|
neeq12d |
|- ( ( ( P ` 1 ) = B /\ ( P ` 2 ) = C ) -> ( ( P ` 2 ) =/= ( P ` 1 ) <-> C =/= B ) ) |
21 |
|
necom |
|- ( C =/= B <-> B =/= C ) |
22 |
20 21
|
bitr2di |
|- ( ( ( P ` 1 ) = B /\ ( P ` 2 ) = C ) -> ( B =/= C <-> ( P ` 2 ) =/= ( P ` 1 ) ) ) |
23 |
22
|
3adant1 |
|- ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) -> ( B =/= C <-> ( P ` 2 ) =/= ( P ` 1 ) ) ) |
24 |
23
|
biimpcd |
|- ( B =/= C -> ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) -> ( P ` 2 ) =/= ( P ` 1 ) ) ) |
25 |
24
|
adantl |
|- ( ( A =/= B /\ B =/= C ) -> ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) -> ( P ` 2 ) =/= ( P ` 1 ) ) ) |
26 |
25
|
imp |
|- ( ( ( A =/= B /\ B =/= C ) /\ ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) ) -> ( P ` 2 ) =/= ( P ` 1 ) ) |
27 |
26
|
a1d |
|- ( ( ( A =/= B /\ B =/= C ) /\ ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) ) -> ( 2 =/= 1 -> ( P ` 2 ) =/= ( P ` 1 ) ) ) |
28 |
14 17 27
|
3jca |
|- ( ( ( A =/= B /\ B =/= C ) /\ ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) ) -> ( ( 0 =/= 1 -> ( P ` 0 ) =/= ( P ` 1 ) ) /\ ( 1 =/= 1 -> ( P ` 1 ) =/= ( P ` 1 ) ) /\ ( 2 =/= 1 -> ( P ` 2 ) =/= ( P ` 1 ) ) ) ) |
29 |
4 5 28
|
syl2anc |
|- ( ph -> ( ( 0 =/= 1 -> ( P ` 0 ) =/= ( P ` 1 ) ) /\ ( 1 =/= 1 -> ( P ` 1 ) =/= ( P ` 1 ) ) /\ ( 2 =/= 1 -> ( P ` 2 ) =/= ( P ` 1 ) ) ) ) |
30 |
1
|
fveq2i |
|- ( # ` P ) = ( # ` <" A B C "> ) |
31 |
|
s3len |
|- ( # ` <" A B C "> ) = 3 |
32 |
30 31
|
eqtri |
|- ( # ` P ) = 3 |
33 |
32
|
oveq2i |
|- ( 0 ..^ ( # ` P ) ) = ( 0 ..^ 3 ) |
34 |
|
fzo0to3tp |
|- ( 0 ..^ 3 ) = { 0 , 1 , 2 } |
35 |
33 34
|
eqtri |
|- ( 0 ..^ ( # ` P ) ) = { 0 , 1 , 2 } |
36 |
35
|
raleqi |
|- ( A. k e. ( 0 ..^ ( # ` P ) ) ( k =/= 1 -> ( P ` k ) =/= ( P ` 1 ) ) <-> A. k e. { 0 , 1 , 2 } ( k =/= 1 -> ( P ` k ) =/= ( P ` 1 ) ) ) |
37 |
|
c0ex |
|- 0 e. _V |
38 |
|
1ex |
|- 1 e. _V |
39 |
|
2ex |
|- 2 e. _V |
40 |
|
neeq1 |
|- ( k = 0 -> ( k =/= 1 <-> 0 =/= 1 ) ) |
41 |
|
fveq2 |
|- ( k = 0 -> ( P ` k ) = ( P ` 0 ) ) |
42 |
41
|
neeq1d |
|- ( k = 0 -> ( ( P ` k ) =/= ( P ` 1 ) <-> ( P ` 0 ) =/= ( P ` 1 ) ) ) |
43 |
40 42
|
imbi12d |
|- ( k = 0 -> ( ( k =/= 1 -> ( P ` k ) =/= ( P ` 1 ) ) <-> ( 0 =/= 1 -> ( P ` 0 ) =/= ( P ` 1 ) ) ) ) |
44 |
|
neeq1 |
|- ( k = 1 -> ( k =/= 1 <-> 1 =/= 1 ) ) |
45 |
|
fveq2 |
|- ( k = 1 -> ( P ` k ) = ( P ` 1 ) ) |
46 |
45
|
neeq1d |
|- ( k = 1 -> ( ( P ` k ) =/= ( P ` 1 ) <-> ( P ` 1 ) =/= ( P ` 1 ) ) ) |
47 |
44 46
|
imbi12d |
|- ( k = 1 -> ( ( k =/= 1 -> ( P ` k ) =/= ( P ` 1 ) ) <-> ( 1 =/= 1 -> ( P ` 1 ) =/= ( P ` 1 ) ) ) ) |
48 |
|
neeq1 |
|- ( k = 2 -> ( k =/= 1 <-> 2 =/= 1 ) ) |
49 |
|
fveq2 |
|- ( k = 2 -> ( P ` k ) = ( P ` 2 ) ) |
50 |
49
|
neeq1d |
|- ( k = 2 -> ( ( P ` k ) =/= ( P ` 1 ) <-> ( P ` 2 ) =/= ( P ` 1 ) ) ) |
51 |
48 50
|
imbi12d |
|- ( k = 2 -> ( ( k =/= 1 -> ( P ` k ) =/= ( P ` 1 ) ) <-> ( 2 =/= 1 -> ( P ` 2 ) =/= ( P ` 1 ) ) ) ) |
52 |
37 38 39 43 47 51
|
raltp |
|- ( A. k e. { 0 , 1 , 2 } ( k =/= 1 -> ( P ` k ) =/= ( P ` 1 ) ) <-> ( ( 0 =/= 1 -> ( P ` 0 ) =/= ( P ` 1 ) ) /\ ( 1 =/= 1 -> ( P ` 1 ) =/= ( P ` 1 ) ) /\ ( 2 =/= 1 -> ( P ` 2 ) =/= ( P ` 1 ) ) ) ) |
53 |
36 52
|
bitri |
|- ( A. k e. ( 0 ..^ ( # ` P ) ) ( k =/= 1 -> ( P ` k ) =/= ( P ` 1 ) ) <-> ( ( 0 =/= 1 -> ( P ` 0 ) =/= ( P ` 1 ) ) /\ ( 1 =/= 1 -> ( P ` 1 ) =/= ( P ` 1 ) ) /\ ( 2 =/= 1 -> ( P ` 2 ) =/= ( P ` 1 ) ) ) ) |
54 |
29 53
|
sylibr |
|- ( ph -> A. k e. ( 0 ..^ ( # ` P ) ) ( k =/= 1 -> ( P ` k ) =/= ( P ` 1 ) ) ) |
55 |
2
|
fveq2i |
|- ( # ` F ) = ( # ` <" J K "> ) |
56 |
|
s2len |
|- ( # ` <" J K "> ) = 2 |
57 |
55 56
|
eqtri |
|- ( # ` F ) = 2 |
58 |
57
|
oveq2i |
|- ( 1 ..^ ( # ` F ) ) = ( 1 ..^ 2 ) |
59 |
|
fzo12sn |
|- ( 1 ..^ 2 ) = { 1 } |
60 |
58 59
|
eqtri |
|- ( 1 ..^ ( # ` F ) ) = { 1 } |
61 |
60
|
raleqi |
|- ( A. j e. ( 1 ..^ ( # ` F ) ) ( k =/= j -> ( P ` k ) =/= ( P ` j ) ) <-> A. j e. { 1 } ( k =/= j -> ( P ` k ) =/= ( P ` j ) ) ) |
62 |
|
neeq2 |
|- ( j = 1 -> ( k =/= j <-> k =/= 1 ) ) |
63 |
|
fveq2 |
|- ( j = 1 -> ( P ` j ) = ( P ` 1 ) ) |
64 |
63
|
neeq2d |
|- ( j = 1 -> ( ( P ` k ) =/= ( P ` j ) <-> ( P ` k ) =/= ( P ` 1 ) ) ) |
65 |
62 64
|
imbi12d |
|- ( j = 1 -> ( ( k =/= j -> ( P ` k ) =/= ( P ` j ) ) <-> ( k =/= 1 -> ( P ` k ) =/= ( P ` 1 ) ) ) ) |
66 |
38 65
|
ralsn |
|- ( A. j e. { 1 } ( k =/= j -> ( P ` k ) =/= ( P ` j ) ) <-> ( k =/= 1 -> ( P ` k ) =/= ( P ` 1 ) ) ) |
67 |
61 66
|
bitri |
|- ( A. j e. ( 1 ..^ ( # ` F ) ) ( k =/= j -> ( P ` k ) =/= ( P ` j ) ) <-> ( k =/= 1 -> ( P ` k ) =/= ( P ` 1 ) ) ) |
68 |
67
|
ralbii |
|- ( A. k e. ( 0 ..^ ( # ` P ) ) A. j e. ( 1 ..^ ( # ` F ) ) ( k =/= j -> ( P ` k ) =/= ( P ` j ) ) <-> A. k e. ( 0 ..^ ( # ` P ) ) ( k =/= 1 -> ( P ` k ) =/= ( P ` 1 ) ) ) |
69 |
54 68
|
sylibr |
|- ( ph -> A. k e. ( 0 ..^ ( # ` P ) ) A. j e. ( 1 ..^ ( # ` F ) ) ( k =/= j -> ( P ` k ) =/= ( P ` j ) ) ) |