Metamath Proof Explorer


Theorem 2pthfrgrrn2

Description: Between any two (different) vertices in a friendship graph is a 2-path (path of length 2), see Proposition 1(b) of MertziosUnger p. 153 : "A friendship graph G ..., as well as the distance between any two nodes in G is at most two". (Contributed by Alexander van der Vekens, 16-Nov-2017) (Revised by AV, 1-Apr-2021)

Ref Expression
Hypotheses 2pthfrgrrn.v
|- V = ( Vtx ` G )
2pthfrgrrn.e
|- E = ( Edg ` G )
Assertion 2pthfrgrrn2
|- ( G e. FriendGraph -> A. a e. V A. c e. ( V \ { a } ) E. b e. V ( ( { a , b } e. E /\ { b , c } e. E ) /\ ( a =/= b /\ b =/= c ) ) )

Proof

Step Hyp Ref Expression
1 2pthfrgrrn.v
 |-  V = ( Vtx ` G )
2 2pthfrgrrn.e
 |-  E = ( Edg ` G )
3 1 2 2pthfrgrrn
 |-  ( G e. FriendGraph -> A. a e. V A. c e. ( V \ { a } ) E. b e. V ( { a , b } e. E /\ { b , c } e. E ) )
4 frgrusgr
 |-  ( G e. FriendGraph -> G e. USGraph )
5 2 usgredgne
 |-  ( ( G e. USGraph /\ { a , b } e. E ) -> a =/= b )
6 5 ex
 |-  ( G e. USGraph -> ( { a , b } e. E -> a =/= b ) )
7 2 usgredgne
 |-  ( ( G e. USGraph /\ { b , c } e. E ) -> b =/= c )
8 7 ex
 |-  ( G e. USGraph -> ( { b , c } e. E -> b =/= c ) )
9 6 8 anim12d
 |-  ( G e. USGraph -> ( ( { a , b } e. E /\ { b , c } e. E ) -> ( a =/= b /\ b =/= c ) ) )
10 4 9 syl
 |-  ( G e. FriendGraph -> ( ( { a , b } e. E /\ { b , c } e. E ) -> ( a =/= b /\ b =/= c ) ) )
11 10 ad2antrr
 |-  ( ( ( G e. FriendGraph /\ ( a e. V /\ c e. ( V \ { a } ) ) ) /\ b e. V ) -> ( ( { a , b } e. E /\ { b , c } e. E ) -> ( a =/= b /\ b =/= c ) ) )
12 11 ancld
 |-  ( ( ( G e. FriendGraph /\ ( a e. V /\ c e. ( V \ { a } ) ) ) /\ b e. V ) -> ( ( { a , b } e. E /\ { b , c } e. E ) -> ( ( { a , b } e. E /\ { b , c } e. E ) /\ ( a =/= b /\ b =/= c ) ) ) )
13 12 reximdva
 |-  ( ( G e. FriendGraph /\ ( a e. V /\ c e. ( V \ { a } ) ) ) -> ( E. b e. V ( { a , b } e. E /\ { b , c } e. E ) -> E. b e. V ( ( { a , b } e. E /\ { b , c } e. E ) /\ ( a =/= b /\ b =/= c ) ) ) )
14 13 ralimdvva
 |-  ( G e. FriendGraph -> ( A. a e. V A. c e. ( V \ { a } ) E. b e. V ( { a , b } e. E /\ { b , c } e. E ) -> A. a e. V A. c e. ( V \ { a } ) E. b e. V ( ( { a , b } e. E /\ { b , c } e. E ) /\ ( a =/= b /\ b =/= c ) ) ) )
15 3 14 mpd
 |-  ( G e. FriendGraph -> A. a e. V A. c e. ( V \ { a } ) E. b e. V ( ( { a , b } e. E /\ { b , c } e. E ) /\ ( a =/= b /\ b =/= c ) ) )