Step |
Hyp |
Ref |
Expression |
1 |
|
2pthnloop.i |
|- I = ( iEdg ` G ) |
2 |
|
pthiswlk |
|- ( F ( Paths ` G ) P -> F ( Walks ` G ) P ) |
3 |
|
wlkv |
|- ( F ( Walks ` G ) P -> ( G e. _V /\ F e. _V /\ P e. _V ) ) |
4 |
2 3
|
syl |
|- ( F ( Paths ` G ) P -> ( G e. _V /\ F e. _V /\ P e. _V ) ) |
5 |
|
ispth |
|- ( F ( Paths ` G ) P <-> ( F ( Trails ` G ) P /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) ) |
6 |
|
istrl |
|- ( F ( Trails ` G ) P <-> ( F ( Walks ` G ) P /\ Fun `' F ) ) |
7 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
8 |
7 1
|
iswlkg |
|- ( G e. _V -> ( F ( Walks ` G ) P <-> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( I ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) ) ) ) |
9 |
8
|
anbi1d |
|- ( G e. _V -> ( ( F ( Walks ` G ) P /\ Fun `' F ) <-> ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( I ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) ) /\ Fun `' F ) ) ) |
10 |
6 9
|
syl5bb |
|- ( G e. _V -> ( F ( Trails ` G ) P <-> ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( I ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) ) /\ Fun `' F ) ) ) |
11 |
|
pthdadjvtx |
|- ( ( F ( Paths ` G ) P /\ 1 < ( # ` F ) /\ i e. ( 0 ..^ ( # ` F ) ) ) -> ( P ` i ) =/= ( P ` ( i + 1 ) ) ) |
12 |
11
|
ad5ant245 |
|- ( ( ( ( ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) /\ F ( Paths ` G ) P ) /\ ( ( Fun `' F /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) ) ) /\ 1 < ( # ` F ) ) /\ i e. ( 0 ..^ ( # ` F ) ) ) -> ( P ` i ) =/= ( P ` ( i + 1 ) ) ) |
13 |
12
|
neneqd |
|- ( ( ( ( ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) /\ F ( Paths ` G ) P ) /\ ( ( Fun `' F /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) ) ) /\ 1 < ( # ` F ) ) /\ i e. ( 0 ..^ ( # ` F ) ) ) -> -. ( P ` i ) = ( P ` ( i + 1 ) ) ) |
14 |
|
ifpfal |
|- ( -. ( P ` i ) = ( P ` ( i + 1 ) ) -> ( if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( I ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) <-> { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) ) |
15 |
14
|
adantl |
|- ( ( ( ( ( ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) /\ F ( Paths ` G ) P ) /\ ( ( Fun `' F /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) ) ) /\ 1 < ( # ` F ) ) /\ i e. ( 0 ..^ ( # ` F ) ) ) /\ -. ( P ` i ) = ( P ` ( i + 1 ) ) ) -> ( if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( I ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) <-> { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) ) |
16 |
|
fvexd |
|- ( -. ( P ` i ) = ( P ` ( i + 1 ) ) -> ( P ` i ) e. _V ) |
17 |
|
fvexd |
|- ( -. ( P ` i ) = ( P ` ( i + 1 ) ) -> ( P ` ( i + 1 ) ) e. _V ) |
18 |
|
neqne |
|- ( -. ( P ` i ) = ( P ` ( i + 1 ) ) -> ( P ` i ) =/= ( P ` ( i + 1 ) ) ) |
19 |
|
fvexd |
|- ( -. ( P ` i ) = ( P ` ( i + 1 ) ) -> ( I ` ( F ` i ) ) e. _V ) |
20 |
|
prsshashgt1 |
|- ( ( ( ( P ` i ) e. _V /\ ( P ` ( i + 1 ) ) e. _V /\ ( P ` i ) =/= ( P ` ( i + 1 ) ) ) /\ ( I ` ( F ` i ) ) e. _V ) -> ( { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) -> 2 <_ ( # ` ( I ` ( F ` i ) ) ) ) ) |
21 |
16 17 18 19 20
|
syl31anc |
|- ( -. ( P ` i ) = ( P ` ( i + 1 ) ) -> ( { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) -> 2 <_ ( # ` ( I ` ( F ` i ) ) ) ) ) |
22 |
21
|
adantl |
|- ( ( ( ( ( ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) /\ F ( Paths ` G ) P ) /\ ( ( Fun `' F /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) ) ) /\ 1 < ( # ` F ) ) /\ i e. ( 0 ..^ ( # ` F ) ) ) /\ -. ( P ` i ) = ( P ` ( i + 1 ) ) ) -> ( { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) -> 2 <_ ( # ` ( I ` ( F ` i ) ) ) ) ) |
23 |
15 22
|
sylbid |
|- ( ( ( ( ( ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) /\ F ( Paths ` G ) P ) /\ ( ( Fun `' F /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) ) ) /\ 1 < ( # ` F ) ) /\ i e. ( 0 ..^ ( # ` F ) ) ) /\ -. ( P ` i ) = ( P ` ( i + 1 ) ) ) -> ( if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( I ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) -> 2 <_ ( # ` ( I ` ( F ` i ) ) ) ) ) |
24 |
13 23
|
mpdan |
|- ( ( ( ( ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) /\ F ( Paths ` G ) P ) /\ ( ( Fun `' F /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) ) ) /\ 1 < ( # ` F ) ) /\ i e. ( 0 ..^ ( # ` F ) ) ) -> ( if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( I ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) -> 2 <_ ( # ` ( I ` ( F ` i ) ) ) ) ) |
25 |
24
|
ralimdva |
|- ( ( ( ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) /\ F ( Paths ` G ) P ) /\ ( ( Fun `' F /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) ) ) /\ 1 < ( # ` F ) ) -> ( A. i e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( I ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) -> A. i e. ( 0 ..^ ( # ` F ) ) 2 <_ ( # ` ( I ` ( F ` i ) ) ) ) ) |
26 |
25
|
ex |
|- ( ( ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) /\ F ( Paths ` G ) P ) /\ ( ( Fun `' F /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) ) ) -> ( 1 < ( # ` F ) -> ( A. i e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( I ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) -> A. i e. ( 0 ..^ ( # ` F ) ) 2 <_ ( # ` ( I ` ( F ` i ) ) ) ) ) ) |
27 |
26
|
com23 |
|- ( ( ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) /\ F ( Paths ` G ) P ) /\ ( ( Fun `' F /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) ) ) -> ( A. i e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( I ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) -> ( 1 < ( # ` F ) -> A. i e. ( 0 ..^ ( # ` F ) ) 2 <_ ( # ` ( I ` ( F ` i ) ) ) ) ) ) |
28 |
27
|
exp31 |
|- ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) -> ( F ( Paths ` G ) P -> ( ( ( Fun `' F /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) ) -> ( A. i e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( I ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) -> ( 1 < ( # ` F ) -> A. i e. ( 0 ..^ ( # ` F ) ) 2 <_ ( # ` ( I ` ( F ` i ) ) ) ) ) ) ) ) |
29 |
28
|
com24 |
|- ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) -> ( A. i e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( I ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) -> ( ( ( Fun `' F /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) ) -> ( F ( Paths ` G ) P -> ( 1 < ( # ` F ) -> A. i e. ( 0 ..^ ( # ` F ) ) 2 <_ ( # ` ( I ` ( F ` i ) ) ) ) ) ) ) ) |
30 |
29
|
3impia |
|- ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( I ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) ) -> ( ( ( Fun `' F /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) ) -> ( F ( Paths ` G ) P -> ( 1 < ( # ` F ) -> A. i e. ( 0 ..^ ( # ` F ) ) 2 <_ ( # ` ( I ` ( F ` i ) ) ) ) ) ) ) |
31 |
30
|
exp4c |
|- ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( I ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) ) -> ( Fun `' F -> ( ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) -> ( Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) -> ( F ( Paths ` G ) P -> ( 1 < ( # ` F ) -> A. i e. ( 0 ..^ ( # ` F ) ) 2 <_ ( # ` ( I ` ( F ` i ) ) ) ) ) ) ) ) ) |
32 |
31
|
imp |
|- ( ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( I ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) ) /\ Fun `' F ) -> ( ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) -> ( Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) -> ( F ( Paths ` G ) P -> ( 1 < ( # ` F ) -> A. i e. ( 0 ..^ ( # ` F ) ) 2 <_ ( # ` ( I ` ( F ` i ) ) ) ) ) ) ) ) |
33 |
10 32
|
syl6bi |
|- ( G e. _V -> ( F ( Trails ` G ) P -> ( ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) -> ( Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) -> ( F ( Paths ` G ) P -> ( 1 < ( # ` F ) -> A. i e. ( 0 ..^ ( # ` F ) ) 2 <_ ( # ` ( I ` ( F ` i ) ) ) ) ) ) ) ) ) |
34 |
33
|
com24 |
|- ( G e. _V -> ( Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) -> ( ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) -> ( F ( Trails ` G ) P -> ( F ( Paths ` G ) P -> ( 1 < ( # ` F ) -> A. i e. ( 0 ..^ ( # ` F ) ) 2 <_ ( # ` ( I ` ( F ` i ) ) ) ) ) ) ) ) ) |
35 |
34
|
com14 |
|- ( F ( Trails ` G ) P -> ( Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) -> ( ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) -> ( G e. _V -> ( F ( Paths ` G ) P -> ( 1 < ( # ` F ) -> A. i e. ( 0 ..^ ( # ` F ) ) 2 <_ ( # ` ( I ` ( F ` i ) ) ) ) ) ) ) ) ) |
36 |
35
|
3imp |
|- ( ( F ( Trails ` G ) P /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) -> ( G e. _V -> ( F ( Paths ` G ) P -> ( 1 < ( # ` F ) -> A. i e. ( 0 ..^ ( # ` F ) ) 2 <_ ( # ` ( I ` ( F ` i ) ) ) ) ) ) ) |
37 |
36
|
com12 |
|- ( G e. _V -> ( ( F ( Trails ` G ) P /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) -> ( F ( Paths ` G ) P -> ( 1 < ( # ` F ) -> A. i e. ( 0 ..^ ( # ` F ) ) 2 <_ ( # ` ( I ` ( F ` i ) ) ) ) ) ) ) |
38 |
5 37
|
syl5bi |
|- ( G e. _V -> ( F ( Paths ` G ) P -> ( F ( Paths ` G ) P -> ( 1 < ( # ` F ) -> A. i e. ( 0 ..^ ( # ` F ) ) 2 <_ ( # ` ( I ` ( F ` i ) ) ) ) ) ) ) |
39 |
38
|
3ad2ant1 |
|- ( ( G e. _V /\ F e. _V /\ P e. _V ) -> ( F ( Paths ` G ) P -> ( F ( Paths ` G ) P -> ( 1 < ( # ` F ) -> A. i e. ( 0 ..^ ( # ` F ) ) 2 <_ ( # ` ( I ` ( F ` i ) ) ) ) ) ) ) |
40 |
4 39
|
mpcom |
|- ( F ( Paths ` G ) P -> ( F ( Paths ` G ) P -> ( 1 < ( # ` F ) -> A. i e. ( 0 ..^ ( # ` F ) ) 2 <_ ( # ` ( I ` ( F ` i ) ) ) ) ) ) |
41 |
40
|
pm2.43i |
|- ( F ( Paths ` G ) P -> ( 1 < ( # ` F ) -> A. i e. ( 0 ..^ ( # ` F ) ) 2 <_ ( # ` ( I ` ( F ` i ) ) ) ) ) |
42 |
41
|
imp |
|- ( ( F ( Paths ` G ) P /\ 1 < ( # ` F ) ) -> A. i e. ( 0 ..^ ( # ` F ) ) 2 <_ ( # ` ( I ` ( F ` i ) ) ) ) |