Step |
Hyp |
Ref |
Expression |
1 |
|
2wlkd.p |
|- P = <" A B C "> |
2 |
|
2wlkd.f |
|- F = <" J K "> |
3 |
|
2wlkd.s |
|- ( ph -> ( A e. V /\ B e. V /\ C e. V ) ) |
4 |
|
2wlkd.n |
|- ( ph -> ( A =/= B /\ B =/= C ) ) |
5 |
|
2wlkd.e |
|- ( ph -> ( { A , B } C_ ( I ` J ) /\ { B , C } C_ ( I ` K ) ) ) |
6 |
|
2wlkd.v |
|- V = ( Vtx ` G ) |
7 |
|
2wlkd.i |
|- I = ( iEdg ` G ) |
8 |
|
2trld.n |
|- ( ph -> J =/= K ) |
9 |
|
2spthd.n |
|- ( ph -> A =/= C ) |
10 |
1 2 3 4 5 6 7 8
|
2trlond |
|- ( ph -> F ( A ( TrailsOn ` G ) C ) P ) |
11 |
1 2 3 4 5 6 7 8 9
|
2spthd |
|- ( ph -> F ( SPaths ` G ) P ) |
12 |
|
3simpb |
|- ( ( A e. V /\ B e. V /\ C e. V ) -> ( A e. V /\ C e. V ) ) |
13 |
3 12
|
syl |
|- ( ph -> ( A e. V /\ C e. V ) ) |
14 |
|
s2cli |
|- <" J K "> e. Word _V |
15 |
2 14
|
eqeltri |
|- F e. Word _V |
16 |
|
s3cli |
|- <" A B C "> e. Word _V |
17 |
1 16
|
eqeltri |
|- P e. Word _V |
18 |
15 17
|
pm3.2i |
|- ( F e. Word _V /\ P e. Word _V ) |
19 |
6
|
isspthson |
|- ( ( ( A e. V /\ C e. V ) /\ ( F e. Word _V /\ P e. Word _V ) ) -> ( F ( A ( SPathsOn ` G ) C ) P <-> ( F ( A ( TrailsOn ` G ) C ) P /\ F ( SPaths ` G ) P ) ) ) |
20 |
13 18 19
|
sylancl |
|- ( ph -> ( F ( A ( SPathsOn ` G ) C ) P <-> ( F ( A ( TrailsOn ` G ) C ) P /\ F ( SPaths ` G ) P ) ) ) |
21 |
10 11 20
|
mpbir2and |
|- ( ph -> F ( A ( SPathsOn ` G ) C ) P ) |