| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sdomirr |
|- -. ~P ~P A ~< ~P ~P A |
| 2 |
|
canth2g |
|- ( A e. V -> A ~< ~P A ) |
| 3 |
|
pwexg |
|- ( A e. V -> ~P A e. _V ) |
| 4 |
|
canth2g |
|- ( ~P A e. _V -> ~P A ~< ~P ~P A ) |
| 5 |
3 4
|
syl |
|- ( A e. V -> ~P A ~< ~P ~P A ) |
| 6 |
|
sdomtr |
|- ( ( A ~< ~P A /\ ~P A ~< ~P ~P A ) -> A ~< ~P ~P A ) |
| 7 |
2 5 6
|
syl2anc |
|- ( A e. V -> A ~< ~P ~P A ) |
| 8 |
|
breq1 |
|- ( ~P ~P A = A -> ( ~P ~P A ~< ~P ~P A <-> A ~< ~P ~P A ) ) |
| 9 |
7 8
|
syl5ibrcom |
|- ( A e. V -> ( ~P ~P A = A -> ~P ~P A ~< ~P ~P A ) ) |
| 10 |
1 9
|
mtoi |
|- ( A e. V -> -. ~P ~P A = A ) |
| 11 |
10
|
neqned |
|- ( A e. V -> ~P ~P A =/= A ) |