Description: Formula-building rule for restricted universal quantifiers (deduction form). (Contributed by NM, 4-Mar-1997) Reduce dependencies on axioms. (Revised by Wolf Lammen, 9-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypothesis | 2ralbidva.1 | |- ( ( ph /\ ( x e. A /\ y e. B ) ) -> ( ps <-> ch ) ) |
|
Assertion | 2ralbidva | |- ( ph -> ( A. x e. A A. y e. B ps <-> A. x e. A A. y e. B ch ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2ralbidva.1 | |- ( ( ph /\ ( x e. A /\ y e. B ) ) -> ( ps <-> ch ) ) |
|
2 | 1 | anassrs | |- ( ( ( ph /\ x e. A ) /\ y e. B ) -> ( ps <-> ch ) ) |
3 | 2 | ralbidva | |- ( ( ph /\ x e. A ) -> ( A. y e. B ps <-> A. y e. B ch ) ) |
4 | 3 | ralbidva | |- ( ph -> ( A. x e. A A. y e. B ps <-> A. x e. A A. y e. B ch ) ) |