Metamath Proof Explorer


Theorem 2ralbidva

Description: Formula-building rule for restricted universal quantifiers (deduction form). (Contributed by NM, 4-Mar-1997) Reduce dependencies on axioms. (Revised by Wolf Lammen, 9-Dec-2019)

Ref Expression
Hypothesis 2ralbidva.1
|- ( ( ph /\ ( x e. A /\ y e. B ) ) -> ( ps <-> ch ) )
Assertion 2ralbidva
|- ( ph -> ( A. x e. A A. y e. B ps <-> A. x e. A A. y e. B ch ) )

Proof

Step Hyp Ref Expression
1 2ralbidva.1
 |-  ( ( ph /\ ( x e. A /\ y e. B ) ) -> ( ps <-> ch ) )
2 1 anassrs
 |-  ( ( ( ph /\ x e. A ) /\ y e. B ) -> ( ps <-> ch ) )
3 2 ralbidva
 |-  ( ( ph /\ x e. A ) -> ( A. y e. B ps <-> A. y e. B ch ) )
4 3 ralbidva
 |-  ( ph -> ( A. x e. A A. y e. B ps <-> A. x e. A A. y e. B ch ) )