Description: Inference adding two restricted universal quantifiers to both sides of an equivalence. (Contributed by NM, 1-Aug-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 2ralbii.1 | |- ( ph <-> ps ) |
|
| Assertion | 2ralbii | |- ( A. x e. A A. y e. B ph <-> A. x e. A A. y e. B ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ralbii.1 | |- ( ph <-> ps ) |
|
| 2 | 1 | ralbii | |- ( A. y e. B ph <-> A. y e. B ps ) |
| 3 | 2 | ralbii | |- ( A. x e. A A. y e. B ph <-> A. x e. A A. y e. B ps ) |