| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2rbropap.1 |
|- ( ph -> M = { <. f , p >. | ( f W p /\ ps /\ ta ) } ) |
| 2 |
|
2rbropap.2 |
|- ( ( f = F /\ p = P ) -> ( ps <-> ch ) ) |
| 3 |
|
2rbropap.3 |
|- ( ( f = F /\ p = P ) -> ( ta <-> th ) ) |
| 4 |
|
3anass |
|- ( ( f W p /\ ps /\ ta ) <-> ( f W p /\ ( ps /\ ta ) ) ) |
| 5 |
4
|
opabbii |
|- { <. f , p >. | ( f W p /\ ps /\ ta ) } = { <. f , p >. | ( f W p /\ ( ps /\ ta ) ) } |
| 6 |
1 5
|
eqtrdi |
|- ( ph -> M = { <. f , p >. | ( f W p /\ ( ps /\ ta ) ) } ) |
| 7 |
2 3
|
anbi12d |
|- ( ( f = F /\ p = P ) -> ( ( ps /\ ta ) <-> ( ch /\ th ) ) ) |
| 8 |
6 7
|
rbropap |
|- ( ( ph /\ F e. X /\ P e. Y ) -> ( F M P <-> ( F W P /\ ( ch /\ th ) ) ) ) |
| 9 |
|
3anass |
|- ( ( F W P /\ ch /\ th ) <-> ( F W P /\ ( ch /\ th ) ) ) |
| 10 |
8 9
|
bitr4di |
|- ( ( ph /\ F e. X /\ P e. Y ) -> ( F M P <-> ( F W P /\ ch /\ th ) ) ) |