Metamath Proof Explorer


Theorem 2rene0

Description: 2 is a nonzero real number. (Contributed by David A. Wheeler, 8-Dec-2018)

Ref Expression
Assertion 2rene0
|- ( 2 e. RR /\ 2 =/= 0 )

Proof

Step Hyp Ref Expression
1 2re
 |-  2 e. RR
2 2ne0
 |-  2 =/= 0
3 1 2 pm3.2i
 |-  ( 2 e. RR /\ 2 =/= 0 )