Metamath Proof Explorer


Theorem 2rexbidv

Description: Formula-building rule for restricted existential quantifiers (deduction form). (Contributed by NM, 28-Jan-2006)

Ref Expression
Hypothesis 2rexbidv.1
|- ( ph -> ( ps <-> ch ) )
Assertion 2rexbidv
|- ( ph -> ( E. x e. A E. y e. B ps <-> E. x e. A E. y e. B ch ) )

Proof

Step Hyp Ref Expression
1 2rexbidv.1
 |-  ( ph -> ( ps <-> ch ) )
2 1 rexbidv
 |-  ( ph -> ( E. y e. B ps <-> E. y e. B ch ) )
3 2 rexbidv
 |-  ( ph -> ( E. x e. A E. y e. B ps <-> E. x e. A E. y e. B ch ) )