Description: Formula-building rule for restricted existential quantifiers (deduction form). (Contributed by NM, 15-Dec-2004)
Ref | Expression | ||
---|---|---|---|
Hypothesis | 2rexbidva.1 | |- ( ( ph /\ ( x e. A /\ y e. B ) ) -> ( ps <-> ch ) ) |
|
Assertion | 2rexbidva | |- ( ph -> ( E. x e. A E. y e. B ps <-> E. x e. A E. y e. B ch ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2rexbidva.1 | |- ( ( ph /\ ( x e. A /\ y e. B ) ) -> ( ps <-> ch ) ) |
|
2 | 1 | anassrs | |- ( ( ( ph /\ x e. A ) /\ y e. B ) -> ( ps <-> ch ) ) |
3 | 2 | rexbidva | |- ( ( ph /\ x e. A ) -> ( E. y e. B ps <-> E. y e. B ch ) ) |
4 | 3 | rexbidva | |- ( ph -> ( E. x e. A E. y e. B ps <-> E. x e. A E. y e. B ch ) ) |