Metamath Proof Explorer


Theorem 2rexbidva

Description: Formula-building rule for restricted existential quantifiers (deduction form). (Contributed by NM, 15-Dec-2004)

Ref Expression
Hypothesis 2rexbidva.1
|- ( ( ph /\ ( x e. A /\ y e. B ) ) -> ( ps <-> ch ) )
Assertion 2rexbidva
|- ( ph -> ( E. x e. A E. y e. B ps <-> E. x e. A E. y e. B ch ) )

Proof

Step Hyp Ref Expression
1 2rexbidva.1
 |-  ( ( ph /\ ( x e. A /\ y e. B ) ) -> ( ps <-> ch ) )
2 1 anassrs
 |-  ( ( ( ph /\ x e. A ) /\ y e. B ) -> ( ps <-> ch ) )
3 2 rexbidva
 |-  ( ( ph /\ x e. A ) -> ( E. y e. B ps <-> E. y e. B ch ) )
4 3 rexbidva
 |-  ( ph -> ( E. x e. A E. y e. B ps <-> E. x e. A E. y e. B ch ) )