Metamath Proof Explorer


Theorem 2rexbiia

Description: Inference adding two restricted existential quantifiers to both sides of an equivalence. (Contributed by NM, 1-Aug-2004)

Ref Expression
Hypothesis 2rexbiia.1
|- ( ( x e. A /\ y e. B ) -> ( ph <-> ps ) )
Assertion 2rexbiia
|- ( E. x e. A E. y e. B ph <-> E. x e. A E. y e. B ps )

Proof

Step Hyp Ref Expression
1 2rexbiia.1
 |-  ( ( x e. A /\ y e. B ) -> ( ph <-> ps ) )
2 1 rexbidva
 |-  ( x e. A -> ( E. y e. B ph <-> E. y e. B ps ) )
3 2 rexbiia
 |-  ( E. x e. A E. y e. B ph <-> E. x e. A E. y e. B ps )