Description: Inference adding two restricted existential quantifiers to both sides of an equivalence. (Contributed by NM, 1-Aug-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 2rexbiia.1 | |- ( ( x e. A /\ y e. B ) -> ( ph <-> ps ) ) |
|
| Assertion | 2rexbiia | |- ( E. x e. A E. y e. B ph <-> E. x e. A E. y e. B ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2rexbiia.1 | |- ( ( x e. A /\ y e. B ) -> ( ph <-> ps ) ) |
|
| 2 | 1 | rexbidva | |- ( x e. A -> ( E. y e. B ph <-> E. y e. B ps ) ) |
| 3 | 2 | rexbiia | |- ( E. x e. A E. y e. B ph <-> E. x e. A E. y e. B ps ) |