Metamath Proof Explorer


Theorem 2rp

Description: 2 is a positive real. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Assertion 2rp
|- 2 e. RR+

Proof

Step Hyp Ref Expression
1 2re
 |-  2 e. RR
2 2pos
 |-  0 < 2
3 1 2 elrpii
 |-  2 e. RR+