Description: Double application of rspcedvdw . (Contributed by SN, 24-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 2rspcedvdw.1 | |- ( x = A -> ( ps <-> ch ) ) |
|
| 2rspcedvdw.2 | |- ( y = B -> ( ch <-> th ) ) |
||
| 2rspcedvdw.a | |- ( ph -> A e. X ) |
||
| 2rspcedvdw.b | |- ( ph -> B e. Y ) |
||
| 2rspcedvdw.3 | |- ( ph -> th ) |
||
| Assertion | 2rspcedvdw | |- ( ph -> E. x e. X E. y e. Y ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2rspcedvdw.1 | |- ( x = A -> ( ps <-> ch ) ) |
|
| 2 | 2rspcedvdw.2 | |- ( y = B -> ( ch <-> th ) ) |
|
| 3 | 2rspcedvdw.a | |- ( ph -> A e. X ) |
|
| 4 | 2rspcedvdw.b | |- ( ph -> B e. Y ) |
|
| 5 | 2rspcedvdw.3 | |- ( ph -> th ) |
|
| 6 | 1 2 | rspc2ev | |- ( ( A e. X /\ B e. Y /\ th ) -> E. x e. X E. y e. Y ps ) |
| 7 | 3 4 5 6 | syl3anc | |- ( ph -> E. x e. X E. y e. Y ps ) |