Step |
Hyp |
Ref |
Expression |
1 |
|
sb5 |
|- ( [ z / x ] [ w / y ] ph <-> E. x ( x = z /\ [ w / y ] ph ) ) |
2 |
|
19.42v |
|- ( E. y ( x = z /\ ( y = w /\ ph ) ) <-> ( x = z /\ E. y ( y = w /\ ph ) ) ) |
3 |
|
anass |
|- ( ( ( x = z /\ y = w ) /\ ph ) <-> ( x = z /\ ( y = w /\ ph ) ) ) |
4 |
3
|
exbii |
|- ( E. y ( ( x = z /\ y = w ) /\ ph ) <-> E. y ( x = z /\ ( y = w /\ ph ) ) ) |
5 |
|
sb5 |
|- ( [ w / y ] ph <-> E. y ( y = w /\ ph ) ) |
6 |
5
|
anbi2i |
|- ( ( x = z /\ [ w / y ] ph ) <-> ( x = z /\ E. y ( y = w /\ ph ) ) ) |
7 |
2 4 6
|
3bitr4ri |
|- ( ( x = z /\ [ w / y ] ph ) <-> E. y ( ( x = z /\ y = w ) /\ ph ) ) |
8 |
7
|
exbii |
|- ( E. x ( x = z /\ [ w / y ] ph ) <-> E. x E. y ( ( x = z /\ y = w ) /\ ph ) ) |
9 |
1 8
|
bitri |
|- ( [ z / x ] [ w / y ] ph <-> E. x E. y ( ( x = z /\ y = w ) /\ ph ) ) |