Step |
Hyp |
Ref |
Expression |
1 |
|
ax6e2ndeq |
|- ( ( -. A. x x = y \/ u = v ) <-> E. x E. y ( x = u /\ y = v ) ) |
2 |
|
anabs5 |
|- ( ( E. x E. y ( x = u /\ y = v ) /\ ( E. x E. y ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) ) <-> ( E. x E. y ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) ) |
3 |
|
2pm13.193 |
|- ( ( ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) <-> ( ( x = u /\ y = v ) /\ ph ) ) |
4 |
3
|
exbii |
|- ( E. y ( ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) <-> E. y ( ( x = u /\ y = v ) /\ ph ) ) |
5 |
|
nfs1v |
|- F/ y [ v / y ] ph |
6 |
5
|
nfsb |
|- F/ y [ u / x ] [ v / y ] ph |
7 |
6
|
19.41 |
|- ( E. y ( ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) <-> ( E. y ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) ) |
8 |
4 7
|
bitr3i |
|- ( E. y ( ( x = u /\ y = v ) /\ ph ) <-> ( E. y ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) ) |
9 |
8
|
exbii |
|- ( E. x E. y ( ( x = u /\ y = v ) /\ ph ) <-> E. x ( E. y ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) ) |
10 |
|
nfs1v |
|- F/ x [ u / x ] [ v / y ] ph |
11 |
10
|
19.41 |
|- ( E. x ( E. y ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) <-> ( E. x E. y ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) ) |
12 |
9 11
|
bitr2i |
|- ( ( E. x E. y ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) <-> E. x E. y ( ( x = u /\ y = v ) /\ ph ) ) |
13 |
12
|
anbi2i |
|- ( ( E. x E. y ( x = u /\ y = v ) /\ ( E. x E. y ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) ) <-> ( E. x E. y ( x = u /\ y = v ) /\ E. x E. y ( ( x = u /\ y = v ) /\ ph ) ) ) |
14 |
2 13
|
bitr3i |
|- ( ( E. x E. y ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) <-> ( E. x E. y ( x = u /\ y = v ) /\ E. x E. y ( ( x = u /\ y = v ) /\ ph ) ) ) |
15 |
|
pm5.32 |
|- ( ( E. x E. y ( x = u /\ y = v ) -> ( [ u / x ] [ v / y ] ph <-> E. x E. y ( ( x = u /\ y = v ) /\ ph ) ) ) <-> ( ( E. x E. y ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) <-> ( E. x E. y ( x = u /\ y = v ) /\ E. x E. y ( ( x = u /\ y = v ) /\ ph ) ) ) ) |
16 |
14 15
|
mpbir |
|- ( E. x E. y ( x = u /\ y = v ) -> ( [ u / x ] [ v / y ] ph <-> E. x E. y ( ( x = u /\ y = v ) /\ ph ) ) ) |
17 |
1 16
|
sylbi |
|- ( ( -. A. x x = y \/ u = v ) -> ( [ u / x ] [ v / y ] ph <-> E. x E. y ( ( x = u /\ y = v ) /\ ph ) ) ) |