| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2sb5rf.1 |
|- F/ z ph |
| 2 |
|
2sb5rf.2 |
|- F/ w ph |
| 3 |
1
|
19.41 |
|- ( E. z ( E. w ( z = x /\ w = y ) /\ ph ) <-> ( E. z E. w ( z = x /\ w = y ) /\ ph ) ) |
| 4 |
2
|
19.41 |
|- ( E. w ( ( z = x /\ w = y ) /\ ph ) <-> ( E. w ( z = x /\ w = y ) /\ ph ) ) |
| 5 |
4
|
exbii |
|- ( E. z E. w ( ( z = x /\ w = y ) /\ ph ) <-> E. z ( E. w ( z = x /\ w = y ) /\ ph ) ) |
| 6 |
|
2ax6e |
|- E. z E. w ( z = x /\ w = y ) |
| 7 |
6
|
biantrur |
|- ( ph <-> ( E. z E. w ( z = x /\ w = y ) /\ ph ) ) |
| 8 |
3 5 7
|
3bitr4ri |
|- ( ph <-> E. z E. w ( ( z = x /\ w = y ) /\ ph ) ) |
| 9 |
|
sbequ12r |
|- ( z = x -> ( [ z / x ] [ w / y ] ph <-> [ w / y ] ph ) ) |
| 10 |
|
sbequ12r |
|- ( w = y -> ( [ w / y ] ph <-> ph ) ) |
| 11 |
9 10
|
sylan9bb |
|- ( ( z = x /\ w = y ) -> ( [ z / x ] [ w / y ] ph <-> ph ) ) |
| 12 |
11
|
pm5.32i |
|- ( ( ( z = x /\ w = y ) /\ [ z / x ] [ w / y ] ph ) <-> ( ( z = x /\ w = y ) /\ ph ) ) |
| 13 |
12
|
2exbii |
|- ( E. z E. w ( ( z = x /\ w = y ) /\ [ z / x ] [ w / y ] ph ) <-> E. z E. w ( ( z = x /\ w = y ) /\ ph ) ) |
| 14 |
8 13
|
bitr4i |
|- ( ph <-> E. z E. w ( ( z = x /\ w = y ) /\ [ z / x ] [ w / y ] ph ) ) |