Step |
Hyp |
Ref |
Expression |
1 |
|
sb6 |
|- ( [ z / x ] [ w / y ] ph <-> A. x ( x = z -> [ w / y ] ph ) ) |
2 |
|
19.21v |
|- ( A. y ( x = z -> ( y = w -> ph ) ) <-> ( x = z -> A. y ( y = w -> ph ) ) ) |
3 |
|
impexp |
|- ( ( ( x = z /\ y = w ) -> ph ) <-> ( x = z -> ( y = w -> ph ) ) ) |
4 |
3
|
albii |
|- ( A. y ( ( x = z /\ y = w ) -> ph ) <-> A. y ( x = z -> ( y = w -> ph ) ) ) |
5 |
|
sb6 |
|- ( [ w / y ] ph <-> A. y ( y = w -> ph ) ) |
6 |
5
|
imbi2i |
|- ( ( x = z -> [ w / y ] ph ) <-> ( x = z -> A. y ( y = w -> ph ) ) ) |
7 |
2 4 6
|
3bitr4ri |
|- ( ( x = z -> [ w / y ] ph ) <-> A. y ( ( x = z /\ y = w ) -> ph ) ) |
8 |
7
|
albii |
|- ( A. x ( x = z -> [ w / y ] ph ) <-> A. x A. y ( ( x = z /\ y = w ) -> ph ) ) |
9 |
1 8
|
bitri |
|- ( [ z / x ] [ w / y ] ph <-> A. x A. y ( ( x = z /\ y = w ) -> ph ) ) |