Step |
Hyp |
Ref |
Expression |
1 |
|
2sb5rf.1 |
|- F/ z ph |
2 |
|
2sb5rf.2 |
|- F/ w ph |
3 |
1
|
19.23 |
|- ( A. z ( E. w ( z = x /\ w = y ) -> ph ) <-> ( E. z E. w ( z = x /\ w = y ) -> ph ) ) |
4 |
2
|
19.23 |
|- ( A. w ( ( z = x /\ w = y ) -> ph ) <-> ( E. w ( z = x /\ w = y ) -> ph ) ) |
5 |
4
|
albii |
|- ( A. z A. w ( ( z = x /\ w = y ) -> ph ) <-> A. z ( E. w ( z = x /\ w = y ) -> ph ) ) |
6 |
|
2ax6e |
|- E. z E. w ( z = x /\ w = y ) |
7 |
6
|
a1bi |
|- ( ph <-> ( E. z E. w ( z = x /\ w = y ) -> ph ) ) |
8 |
3 5 7
|
3bitr4ri |
|- ( ph <-> A. z A. w ( ( z = x /\ w = y ) -> ph ) ) |
9 |
|
sbequ12r |
|- ( z = x -> ( [ z / x ] [ w / y ] ph <-> [ w / y ] ph ) ) |
10 |
|
sbequ12r |
|- ( w = y -> ( [ w / y ] ph <-> ph ) ) |
11 |
9 10
|
sylan9bb |
|- ( ( z = x /\ w = y ) -> ( [ z / x ] [ w / y ] ph <-> ph ) ) |
12 |
11
|
pm5.74i |
|- ( ( ( z = x /\ w = y ) -> [ z / x ] [ w / y ] ph ) <-> ( ( z = x /\ w = y ) -> ph ) ) |
13 |
12
|
2albii |
|- ( A. z A. w ( ( z = x /\ w = y ) -> [ z / x ] [ w / y ] ph ) <-> A. z A. w ( ( z = x /\ w = y ) -> ph ) ) |
14 |
8 13
|
bitr4i |
|- ( ph <-> A. z A. w ( ( z = x /\ w = y ) -> [ z / x ] [ w / y ] ph ) ) |