| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nfv |  |-  F/ w ph | 
						
							| 2 | 1 | sb8e |  |-  ( E. y ph <-> E. w [ w / y ] ph ) | 
						
							| 3 | 2 | exbii |  |-  ( E. x E. y ph <-> E. x E. w [ w / y ] ph ) | 
						
							| 4 |  | excom |  |-  ( E. x E. w [ w / y ] ph <-> E. w E. x [ w / y ] ph ) | 
						
							| 5 | 3 4 | bitri |  |-  ( E. x E. y ph <-> E. w E. x [ w / y ] ph ) | 
						
							| 6 |  | nfv |  |-  F/ z ph | 
						
							| 7 | 6 | nfsb |  |-  F/ z [ w / y ] ph | 
						
							| 8 | 7 | sb8e |  |-  ( E. x [ w / y ] ph <-> E. z [ z / x ] [ w / y ] ph ) | 
						
							| 9 | 8 | exbii |  |-  ( E. w E. x [ w / y ] ph <-> E. w E. z [ z / x ] [ w / y ] ph ) | 
						
							| 10 |  | excom |  |-  ( E. w E. z [ z / x ] [ w / y ] ph <-> E. z E. w [ z / x ] [ w / y ] ph ) | 
						
							| 11 | 5 9 10 | 3bitri |  |-  ( E. x E. y ph <-> E. z E. w [ z / x ] [ w / y ] ph ) |