Step |
Hyp |
Ref |
Expression |
1 |
|
nfv |
|- F/ w ph |
2 |
1
|
sb8e |
|- ( E. y ph <-> E. w [ w / y ] ph ) |
3 |
2
|
exbii |
|- ( E. x E. y ph <-> E. x E. w [ w / y ] ph ) |
4 |
|
excom |
|- ( E. x E. w [ w / y ] ph <-> E. w E. x [ w / y ] ph ) |
5 |
3 4
|
bitri |
|- ( E. x E. y ph <-> E. w E. x [ w / y ] ph ) |
6 |
|
nfv |
|- F/ z ph |
7 |
6
|
nfsb |
|- F/ z [ w / y ] ph |
8 |
7
|
sb8e |
|- ( E. x [ w / y ] ph <-> E. z [ z / x ] [ w / y ] ph ) |
9 |
8
|
exbii |
|- ( E. w E. x [ w / y ] ph <-> E. w E. z [ z / x ] [ w / y ] ph ) |
10 |
|
excom |
|- ( E. w E. z [ z / x ] [ w / y ] ph <-> E. z E. w [ z / x ] [ w / y ] ph ) |
11 |
5 9 10
|
3bitri |
|- ( E. x E. y ph <-> E. z E. w [ z / x ] [ w / y ] ph ) |