Metamath Proof Explorer


Theorem 2sbbid

Description: Deduction doubly substituting both sides of a biconditional. (Contributed by AV, 30-Jul-2023)

Ref Expression
Hypotheses sbbid.1
|- F/ x ph
sbbid.2
|- ( ph -> ( ps <-> ch ) )
2sbbid.1
|- F/ y ph
Assertion 2sbbid
|- ( ph -> ( [ t / x ] [ u / y ] ps <-> [ t / x ] [ u / y ] ch ) )

Proof

Step Hyp Ref Expression
1 sbbid.1
 |-  F/ x ph
2 sbbid.2
 |-  ( ph -> ( ps <-> ch ) )
3 2sbbid.1
 |-  F/ y ph
4 3 2 sbbid
 |-  ( ph -> ( [ u / y ] ps <-> [ u / y ] ch ) )
5 1 4 sbbid
 |-  ( ph -> ( [ t / x ] [ u / y ] ps <-> [ t / x ] [ u / y ] ch ) )