Description: Deduction doubly substituting both sides of a biconditional. (Contributed by AV, 30-Jul-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sbbid.1 | |- F/ x ph |
|
sbbid.2 | |- ( ph -> ( ps <-> ch ) ) |
||
2sbbid.1 | |- F/ y ph |
||
Assertion | 2sbbid | |- ( ph -> ( [ t / x ] [ u / y ] ps <-> [ t / x ] [ u / y ] ch ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbbid.1 | |- F/ x ph |
|
2 | sbbid.2 | |- ( ph -> ( ps <-> ch ) ) |
|
3 | 2sbbid.1 | |- F/ y ph |
|
4 | 3 2 | sbbid | |- ( ph -> ( [ u / y ] ps <-> [ u / y ] ch ) ) |
5 | 1 4 | sbbid | |- ( ph -> ( [ t / x ] [ u / y ] ps <-> [ t / x ] [ u / y ] ch ) ) |