Description: Infer double substitution into both sides of a logical equivalence. (Contributed by AV, 30-Jul-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | sbbii.1 | |- ( ph <-> ps ) | |
| Assertion | 2sbbii | |- ( [ t / x ] [ u / y ] ph <-> [ t / x ] [ u / y ] ps ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sbbii.1 | |- ( ph <-> ps ) | |
| 2 | 1 | sbbii | |- ( [ u / y ] ph <-> [ u / y ] ps ) | 
| 3 | 2 | sbbii | |- ( [ t / x ] [ u / y ] ph <-> [ t / x ] [ u / y ] ps ) |