Step |
Hyp |
Ref |
Expression |
1 |
|
eqeq2 |
|- ( y = B -> ( w = y <-> w = B ) ) |
2 |
1
|
anbi2d |
|- ( y = B -> ( ( z = x /\ w = y ) <-> ( z = x /\ w = B ) ) ) |
3 |
2
|
anbi1d |
|- ( y = B -> ( ( ( z = x /\ w = y ) /\ ph ) <-> ( ( z = x /\ w = B ) /\ ph ) ) ) |
4 |
3
|
2exbidv |
|- ( y = B -> ( E. z E. w ( ( z = x /\ w = y ) /\ ph ) <-> E. z E. w ( ( z = x /\ w = B ) /\ ph ) ) ) |
5 |
|
dfsbcq |
|- ( y = B -> ( [. y / w ]. ph <-> [. B / w ]. ph ) ) |
6 |
5
|
sbcbidv |
|- ( y = B -> ( [. x / z ]. [. y / w ]. ph <-> [. x / z ]. [. B / w ]. ph ) ) |
7 |
4 6
|
bibi12d |
|- ( y = B -> ( ( E. z E. w ( ( z = x /\ w = y ) /\ ph ) <-> [. x / z ]. [. y / w ]. ph ) <-> ( E. z E. w ( ( z = x /\ w = B ) /\ ph ) <-> [. x / z ]. [. B / w ]. ph ) ) ) |
8 |
|
eqeq2 |
|- ( x = A -> ( z = x <-> z = A ) ) |
9 |
8
|
anbi1d |
|- ( x = A -> ( ( z = x /\ w = B ) <-> ( z = A /\ w = B ) ) ) |
10 |
9
|
anbi1d |
|- ( x = A -> ( ( ( z = x /\ w = B ) /\ ph ) <-> ( ( z = A /\ w = B ) /\ ph ) ) ) |
11 |
10
|
2exbidv |
|- ( x = A -> ( E. z E. w ( ( z = x /\ w = B ) /\ ph ) <-> E. z E. w ( ( z = A /\ w = B ) /\ ph ) ) ) |
12 |
|
dfsbcq |
|- ( x = A -> ( [. x / z ]. [. B / w ]. ph <-> [. A / z ]. [. B / w ]. ph ) ) |
13 |
11 12
|
bibi12d |
|- ( x = A -> ( ( E. z E. w ( ( z = x /\ w = B ) /\ ph ) <-> [. x / z ]. [. B / w ]. ph ) <-> ( E. z E. w ( ( z = A /\ w = B ) /\ ph ) <-> [. A / z ]. [. B / w ]. ph ) ) ) |
14 |
|
sbc5 |
|- ( [. x / z ]. [. y / w ]. ph <-> E. z ( z = x /\ [. y / w ]. ph ) ) |
15 |
|
19.42v |
|- ( E. w ( z = x /\ ( w = y /\ ph ) ) <-> ( z = x /\ E. w ( w = y /\ ph ) ) ) |
16 |
|
anass |
|- ( ( ( z = x /\ w = y ) /\ ph ) <-> ( z = x /\ ( w = y /\ ph ) ) ) |
17 |
16
|
exbii |
|- ( E. w ( ( z = x /\ w = y ) /\ ph ) <-> E. w ( z = x /\ ( w = y /\ ph ) ) ) |
18 |
|
sbc5 |
|- ( [. y / w ]. ph <-> E. w ( w = y /\ ph ) ) |
19 |
18
|
anbi2i |
|- ( ( z = x /\ [. y / w ]. ph ) <-> ( z = x /\ E. w ( w = y /\ ph ) ) ) |
20 |
15 17 19
|
3bitr4ri |
|- ( ( z = x /\ [. y / w ]. ph ) <-> E. w ( ( z = x /\ w = y ) /\ ph ) ) |
21 |
20
|
exbii |
|- ( E. z ( z = x /\ [. y / w ]. ph ) <-> E. z E. w ( ( z = x /\ w = y ) /\ ph ) ) |
22 |
14 21
|
bitr2i |
|- ( E. z E. w ( ( z = x /\ w = y ) /\ ph ) <-> [. x / z ]. [. y / w ]. ph ) |
23 |
7 13 22
|
vtocl2g |
|- ( ( B e. D /\ A e. C ) -> ( E. z E. w ( ( z = A /\ w = B ) /\ ph ) <-> [. A / z ]. [. B / w ]. ph ) ) |
24 |
23
|
ancoms |
|- ( ( A e. C /\ B e. D ) -> ( E. z E. w ( ( z = A /\ w = B ) /\ ph ) <-> [. A / z ]. [. B / w ]. ph ) ) |