Step |
Hyp |
Ref |
Expression |
1 |
|
eqeq2 |
|- ( y = B -> ( w = y <-> w = B ) ) |
2 |
1
|
anbi2d |
|- ( y = B -> ( ( z = x /\ w = y ) <-> ( z = x /\ w = B ) ) ) |
3 |
2
|
imbi1d |
|- ( y = B -> ( ( ( z = x /\ w = y ) -> ph ) <-> ( ( z = x /\ w = B ) -> ph ) ) ) |
4 |
3
|
2albidv |
|- ( y = B -> ( A. z A. w ( ( z = x /\ w = y ) -> ph ) <-> A. z A. w ( ( z = x /\ w = B ) -> ph ) ) ) |
5 |
|
dfsbcq |
|- ( y = B -> ( [. y / w ]. ph <-> [. B / w ]. ph ) ) |
6 |
5
|
sbcbidv |
|- ( y = B -> ( [. x / z ]. [. y / w ]. ph <-> [. x / z ]. [. B / w ]. ph ) ) |
7 |
4 6
|
bibi12d |
|- ( y = B -> ( ( A. z A. w ( ( z = x /\ w = y ) -> ph ) <-> [. x / z ]. [. y / w ]. ph ) <-> ( A. z A. w ( ( z = x /\ w = B ) -> ph ) <-> [. x / z ]. [. B / w ]. ph ) ) ) |
8 |
|
eqeq2 |
|- ( x = A -> ( z = x <-> z = A ) ) |
9 |
8
|
anbi1d |
|- ( x = A -> ( ( z = x /\ w = B ) <-> ( z = A /\ w = B ) ) ) |
10 |
9
|
imbi1d |
|- ( x = A -> ( ( ( z = x /\ w = B ) -> ph ) <-> ( ( z = A /\ w = B ) -> ph ) ) ) |
11 |
10
|
2albidv |
|- ( x = A -> ( A. z A. w ( ( z = x /\ w = B ) -> ph ) <-> A. z A. w ( ( z = A /\ w = B ) -> ph ) ) ) |
12 |
|
dfsbcq |
|- ( x = A -> ( [. x / z ]. [. B / w ]. ph <-> [. A / z ]. [. B / w ]. ph ) ) |
13 |
11 12
|
bibi12d |
|- ( x = A -> ( ( A. z A. w ( ( z = x /\ w = B ) -> ph ) <-> [. x / z ]. [. B / w ]. ph ) <-> ( A. z A. w ( ( z = A /\ w = B ) -> ph ) <-> [. A / z ]. [. B / w ]. ph ) ) ) |
14 |
|
vex |
|- x e. _V |
15 |
14
|
sbc6 |
|- ( [. x / z ]. [. y / w ]. ph <-> A. z ( z = x -> [. y / w ]. ph ) ) |
16 |
|
19.21v |
|- ( A. w ( z = x -> ( w = y -> ph ) ) <-> ( z = x -> A. w ( w = y -> ph ) ) ) |
17 |
|
impexp |
|- ( ( ( z = x /\ w = y ) -> ph ) <-> ( z = x -> ( w = y -> ph ) ) ) |
18 |
17
|
albii |
|- ( A. w ( ( z = x /\ w = y ) -> ph ) <-> A. w ( z = x -> ( w = y -> ph ) ) ) |
19 |
|
vex |
|- y e. _V |
20 |
19
|
sbc6 |
|- ( [. y / w ]. ph <-> A. w ( w = y -> ph ) ) |
21 |
20
|
imbi2i |
|- ( ( z = x -> [. y / w ]. ph ) <-> ( z = x -> A. w ( w = y -> ph ) ) ) |
22 |
16 18 21
|
3bitr4ri |
|- ( ( z = x -> [. y / w ]. ph ) <-> A. w ( ( z = x /\ w = y ) -> ph ) ) |
23 |
22
|
albii |
|- ( A. z ( z = x -> [. y / w ]. ph ) <-> A. z A. w ( ( z = x /\ w = y ) -> ph ) ) |
24 |
15 23
|
bitr2i |
|- ( A. z A. w ( ( z = x /\ w = y ) -> ph ) <-> [. x / z ]. [. y / w ]. ph ) |
25 |
7 13 24
|
vtocl2g |
|- ( ( B e. D /\ A e. C ) -> ( A. z A. w ( ( z = A /\ w = B ) -> ph ) <-> [. A / z ]. [. B / w ]. ph ) ) |
26 |
25
|
ancoms |
|- ( ( A e. C /\ B e. D ) -> ( A. z A. w ( ( z = A /\ w = B ) -> ph ) <-> [. A / z ]. [. B / w ]. ph ) ) |