| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2sphere.i |
|- I = { 1 , 2 } |
| 2 |
|
2sphere.e |
|- E = ( RR^ ` I ) |
| 3 |
|
2sphere.p |
|- P = ( RR ^m I ) |
| 4 |
|
2sphere.s |
|- S = ( Sphere ` E ) |
| 5 |
|
2sphere.c |
|- C = { p e. P | ( ( ( ( p ` 1 ) - ( M ` 1 ) ) ^ 2 ) + ( ( ( p ` 2 ) - ( M ` 2 ) ) ^ 2 ) ) = ( R ^ 2 ) } |
| 6 |
|
prfi |
|- { 1 , 2 } e. Fin |
| 7 |
1 6
|
eqeltri |
|- I e. Fin |
| 8 |
|
simpl |
|- ( ( M e. P /\ R e. ( 0 [,) +oo ) ) -> M e. P ) |
| 9 |
|
elrege0 |
|- ( R e. ( 0 [,) +oo ) <-> ( R e. RR /\ 0 <_ R ) ) |
| 10 |
9
|
simplbi |
|- ( R e. ( 0 [,) +oo ) -> R e. RR ) |
| 11 |
10
|
adantl |
|- ( ( M e. P /\ R e. ( 0 [,) +oo ) ) -> R e. RR ) |
| 12 |
|
eqid |
|- ( dist ` E ) = ( dist ` E ) |
| 13 |
2 3 12 4
|
rrxsphere |
|- ( ( I e. Fin /\ M e. P /\ R e. RR ) -> ( M S R ) = { p e. P | ( p ( dist ` E ) M ) = R } ) |
| 14 |
7 8 11 13
|
mp3an2i |
|- ( ( M e. P /\ R e. ( 0 [,) +oo ) ) -> ( M S R ) = { p e. P | ( p ( dist ` E ) M ) = R } ) |
| 15 |
9
|
biimpi |
|- ( R e. ( 0 [,) +oo ) -> ( R e. RR /\ 0 <_ R ) ) |
| 16 |
15
|
ad2antlr |
|- ( ( ( M e. P /\ R e. ( 0 [,) +oo ) ) /\ p e. P ) -> ( R e. RR /\ 0 <_ R ) ) |
| 17 |
|
sqrtsq |
|- ( ( R e. RR /\ 0 <_ R ) -> ( sqrt ` ( R ^ 2 ) ) = R ) |
| 18 |
16 17
|
syl |
|- ( ( ( M e. P /\ R e. ( 0 [,) +oo ) ) /\ p e. P ) -> ( sqrt ` ( R ^ 2 ) ) = R ) |
| 19 |
18
|
eqeq2d |
|- ( ( ( M e. P /\ R e. ( 0 [,) +oo ) ) /\ p e. P ) -> ( ( sqrt ` ( ( ( ( p ` 1 ) - ( M ` 1 ) ) ^ 2 ) + ( ( ( p ` 2 ) - ( M ` 2 ) ) ^ 2 ) ) ) = ( sqrt ` ( R ^ 2 ) ) <-> ( sqrt ` ( ( ( ( p ` 1 ) - ( M ` 1 ) ) ^ 2 ) + ( ( ( p ` 2 ) - ( M ` 2 ) ) ^ 2 ) ) ) = R ) ) |
| 20 |
1 3
|
rrx2pxel |
|- ( p e. P -> ( p ` 1 ) e. RR ) |
| 21 |
20
|
adantl |
|- ( ( M e. P /\ p e. P ) -> ( p ` 1 ) e. RR ) |
| 22 |
1 3
|
rrx2pxel |
|- ( M e. P -> ( M ` 1 ) e. RR ) |
| 23 |
22
|
adantr |
|- ( ( M e. P /\ p e. P ) -> ( M ` 1 ) e. RR ) |
| 24 |
21 23
|
resubcld |
|- ( ( M e. P /\ p e. P ) -> ( ( p ` 1 ) - ( M ` 1 ) ) e. RR ) |
| 25 |
24
|
resqcld |
|- ( ( M e. P /\ p e. P ) -> ( ( ( p ` 1 ) - ( M ` 1 ) ) ^ 2 ) e. RR ) |
| 26 |
1 3
|
rrx2pyel |
|- ( p e. P -> ( p ` 2 ) e. RR ) |
| 27 |
26
|
adantl |
|- ( ( M e. P /\ p e. P ) -> ( p ` 2 ) e. RR ) |
| 28 |
1 3
|
rrx2pyel |
|- ( M e. P -> ( M ` 2 ) e. RR ) |
| 29 |
28
|
adantr |
|- ( ( M e. P /\ p e. P ) -> ( M ` 2 ) e. RR ) |
| 30 |
27 29
|
resubcld |
|- ( ( M e. P /\ p e. P ) -> ( ( p ` 2 ) - ( M ` 2 ) ) e. RR ) |
| 31 |
30
|
resqcld |
|- ( ( M e. P /\ p e. P ) -> ( ( ( p ` 2 ) - ( M ` 2 ) ) ^ 2 ) e. RR ) |
| 32 |
25 31
|
readdcld |
|- ( ( M e. P /\ p e. P ) -> ( ( ( ( p ` 1 ) - ( M ` 1 ) ) ^ 2 ) + ( ( ( p ` 2 ) - ( M ` 2 ) ) ^ 2 ) ) e. RR ) |
| 33 |
24
|
sqge0d |
|- ( ( M e. P /\ p e. P ) -> 0 <_ ( ( ( p ` 1 ) - ( M ` 1 ) ) ^ 2 ) ) |
| 34 |
30
|
sqge0d |
|- ( ( M e. P /\ p e. P ) -> 0 <_ ( ( ( p ` 2 ) - ( M ` 2 ) ) ^ 2 ) ) |
| 35 |
25 31 33 34
|
addge0d |
|- ( ( M e. P /\ p e. P ) -> 0 <_ ( ( ( ( p ` 1 ) - ( M ` 1 ) ) ^ 2 ) + ( ( ( p ` 2 ) - ( M ` 2 ) ) ^ 2 ) ) ) |
| 36 |
32 35
|
jca |
|- ( ( M e. P /\ p e. P ) -> ( ( ( ( ( p ` 1 ) - ( M ` 1 ) ) ^ 2 ) + ( ( ( p ` 2 ) - ( M ` 2 ) ) ^ 2 ) ) e. RR /\ 0 <_ ( ( ( ( p ` 1 ) - ( M ` 1 ) ) ^ 2 ) + ( ( ( p ` 2 ) - ( M ` 2 ) ) ^ 2 ) ) ) ) |
| 37 |
36
|
adantlr |
|- ( ( ( M e. P /\ R e. ( 0 [,) +oo ) ) /\ p e. P ) -> ( ( ( ( ( p ` 1 ) - ( M ` 1 ) ) ^ 2 ) + ( ( ( p ` 2 ) - ( M ` 2 ) ) ^ 2 ) ) e. RR /\ 0 <_ ( ( ( ( p ` 1 ) - ( M ` 1 ) ) ^ 2 ) + ( ( ( p ` 2 ) - ( M ` 2 ) ) ^ 2 ) ) ) ) |
| 38 |
|
resqcl |
|- ( R e. RR -> ( R ^ 2 ) e. RR ) |
| 39 |
|
sqge0 |
|- ( R e. RR -> 0 <_ ( R ^ 2 ) ) |
| 40 |
38 39
|
jca |
|- ( R e. RR -> ( ( R ^ 2 ) e. RR /\ 0 <_ ( R ^ 2 ) ) ) |
| 41 |
10 40
|
syl |
|- ( R e. ( 0 [,) +oo ) -> ( ( R ^ 2 ) e. RR /\ 0 <_ ( R ^ 2 ) ) ) |
| 42 |
41
|
ad2antlr |
|- ( ( ( M e. P /\ R e. ( 0 [,) +oo ) ) /\ p e. P ) -> ( ( R ^ 2 ) e. RR /\ 0 <_ ( R ^ 2 ) ) ) |
| 43 |
|
sqrt11 |
|- ( ( ( ( ( ( ( p ` 1 ) - ( M ` 1 ) ) ^ 2 ) + ( ( ( p ` 2 ) - ( M ` 2 ) ) ^ 2 ) ) e. RR /\ 0 <_ ( ( ( ( p ` 1 ) - ( M ` 1 ) ) ^ 2 ) + ( ( ( p ` 2 ) - ( M ` 2 ) ) ^ 2 ) ) ) /\ ( ( R ^ 2 ) e. RR /\ 0 <_ ( R ^ 2 ) ) ) -> ( ( sqrt ` ( ( ( ( p ` 1 ) - ( M ` 1 ) ) ^ 2 ) + ( ( ( p ` 2 ) - ( M ` 2 ) ) ^ 2 ) ) ) = ( sqrt ` ( R ^ 2 ) ) <-> ( ( ( ( p ` 1 ) - ( M ` 1 ) ) ^ 2 ) + ( ( ( p ` 2 ) - ( M ` 2 ) ) ^ 2 ) ) = ( R ^ 2 ) ) ) |
| 44 |
37 42 43
|
syl2anc |
|- ( ( ( M e. P /\ R e. ( 0 [,) +oo ) ) /\ p e. P ) -> ( ( sqrt ` ( ( ( ( p ` 1 ) - ( M ` 1 ) ) ^ 2 ) + ( ( ( p ` 2 ) - ( M ` 2 ) ) ^ 2 ) ) ) = ( sqrt ` ( R ^ 2 ) ) <-> ( ( ( ( p ` 1 ) - ( M ` 1 ) ) ^ 2 ) + ( ( ( p ` 2 ) - ( M ` 2 ) ) ^ 2 ) ) = ( R ^ 2 ) ) ) |
| 45 |
8
|
anim1ci |
|- ( ( ( M e. P /\ R e. ( 0 [,) +oo ) ) /\ p e. P ) -> ( p e. P /\ M e. P ) ) |
| 46 |
|
2nn0 |
|- 2 e. NN0 |
| 47 |
|
eqid |
|- ( EEhil ` 2 ) = ( EEhil ` 2 ) |
| 48 |
47
|
ehlval |
|- ( 2 e. NN0 -> ( EEhil ` 2 ) = ( RR^ ` ( 1 ... 2 ) ) ) |
| 49 |
46 48
|
ax-mp |
|- ( EEhil ` 2 ) = ( RR^ ` ( 1 ... 2 ) ) |
| 50 |
|
fz12pr |
|- ( 1 ... 2 ) = { 1 , 2 } |
| 51 |
50 1
|
eqtr4i |
|- ( 1 ... 2 ) = I |
| 52 |
51
|
fveq2i |
|- ( RR^ ` ( 1 ... 2 ) ) = ( RR^ ` I ) |
| 53 |
49 52
|
eqtri |
|- ( EEhil ` 2 ) = ( RR^ ` I ) |
| 54 |
2 53
|
eqtr4i |
|- E = ( EEhil ` 2 ) |
| 55 |
1
|
oveq2i |
|- ( RR ^m I ) = ( RR ^m { 1 , 2 } ) |
| 56 |
3 55
|
eqtri |
|- P = ( RR ^m { 1 , 2 } ) |
| 57 |
54 56 12
|
ehl2eudisval |
|- ( ( p e. P /\ M e. P ) -> ( p ( dist ` E ) M ) = ( sqrt ` ( ( ( ( p ` 1 ) - ( M ` 1 ) ) ^ 2 ) + ( ( ( p ` 2 ) - ( M ` 2 ) ) ^ 2 ) ) ) ) |
| 58 |
45 57
|
syl |
|- ( ( ( M e. P /\ R e. ( 0 [,) +oo ) ) /\ p e. P ) -> ( p ( dist ` E ) M ) = ( sqrt ` ( ( ( ( p ` 1 ) - ( M ` 1 ) ) ^ 2 ) + ( ( ( p ` 2 ) - ( M ` 2 ) ) ^ 2 ) ) ) ) |
| 59 |
58
|
eqcomd |
|- ( ( ( M e. P /\ R e. ( 0 [,) +oo ) ) /\ p e. P ) -> ( sqrt ` ( ( ( ( p ` 1 ) - ( M ` 1 ) ) ^ 2 ) + ( ( ( p ` 2 ) - ( M ` 2 ) ) ^ 2 ) ) ) = ( p ( dist ` E ) M ) ) |
| 60 |
59
|
eqeq1d |
|- ( ( ( M e. P /\ R e. ( 0 [,) +oo ) ) /\ p e. P ) -> ( ( sqrt ` ( ( ( ( p ` 1 ) - ( M ` 1 ) ) ^ 2 ) + ( ( ( p ` 2 ) - ( M ` 2 ) ) ^ 2 ) ) ) = R <-> ( p ( dist ` E ) M ) = R ) ) |
| 61 |
19 44 60
|
3bitr3d |
|- ( ( ( M e. P /\ R e. ( 0 [,) +oo ) ) /\ p e. P ) -> ( ( ( ( ( p ` 1 ) - ( M ` 1 ) ) ^ 2 ) + ( ( ( p ` 2 ) - ( M ` 2 ) ) ^ 2 ) ) = ( R ^ 2 ) <-> ( p ( dist ` E ) M ) = R ) ) |
| 62 |
61
|
rabbidva |
|- ( ( M e. P /\ R e. ( 0 [,) +oo ) ) -> { p e. P | ( ( ( ( p ` 1 ) - ( M ` 1 ) ) ^ 2 ) + ( ( ( p ` 2 ) - ( M ` 2 ) ) ^ 2 ) ) = ( R ^ 2 ) } = { p e. P | ( p ( dist ` E ) M ) = R } ) |
| 63 |
5 62
|
eqtr2id |
|- ( ( M e. P /\ R e. ( 0 [,) +oo ) ) -> { p e. P | ( p ( dist ` E ) M ) = R } = C ) |
| 64 |
14 63
|
eqtrd |
|- ( ( M e. P /\ R e. ( 0 [,) +oo ) ) -> ( M S R ) = C ) |