| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2sphere.i |
|- I = { 1 , 2 } |
| 2 |
|
2sphere.e |
|- E = ( RR^ ` I ) |
| 3 |
|
2sphere.p |
|- P = ( RR ^m I ) |
| 4 |
|
2sphere.s |
|- S = ( Sphere ` E ) |
| 5 |
|
2sphere0.0 |
|- .0. = ( I X. { 0 } ) |
| 6 |
|
2sphere0.c |
|- C = { p e. P | ( ( ( p ` 1 ) ^ 2 ) + ( ( p ` 2 ) ^ 2 ) ) = ( R ^ 2 ) } |
| 7 |
|
prex |
|- { 1 , 2 } e. _V |
| 8 |
1 7
|
eqeltri |
|- I e. _V |
| 9 |
5 3
|
rrx0el |
|- ( I e. _V -> .0. e. P ) |
| 10 |
8 9
|
ax-mp |
|- .0. e. P |
| 11 |
|
eqid |
|- { p e. P | ( ( ( ( p ` 1 ) - ( .0. ` 1 ) ) ^ 2 ) + ( ( ( p ` 2 ) - ( .0. ` 2 ) ) ^ 2 ) ) = ( R ^ 2 ) } = { p e. P | ( ( ( ( p ` 1 ) - ( .0. ` 1 ) ) ^ 2 ) + ( ( ( p ` 2 ) - ( .0. ` 2 ) ) ^ 2 ) ) = ( R ^ 2 ) } |
| 12 |
1 2 3 4 11
|
2sphere |
|- ( ( .0. e. P /\ R e. ( 0 [,) +oo ) ) -> ( .0. S R ) = { p e. P | ( ( ( ( p ` 1 ) - ( .0. ` 1 ) ) ^ 2 ) + ( ( ( p ` 2 ) - ( .0. ` 2 ) ) ^ 2 ) ) = ( R ^ 2 ) } ) |
| 13 |
10 12
|
mpan |
|- ( R e. ( 0 [,) +oo ) -> ( .0. S R ) = { p e. P | ( ( ( ( p ` 1 ) - ( .0. ` 1 ) ) ^ 2 ) + ( ( ( p ` 2 ) - ( .0. ` 2 ) ) ^ 2 ) ) = ( R ^ 2 ) } ) |
| 14 |
5
|
fveq1i |
|- ( .0. ` 1 ) = ( ( I X. { 0 } ) ` 1 ) |
| 15 |
|
c0ex |
|- 0 e. _V |
| 16 |
|
1ex |
|- 1 e. _V |
| 17 |
16
|
prid1 |
|- 1 e. { 1 , 2 } |
| 18 |
17 1
|
eleqtrri |
|- 1 e. I |
| 19 |
|
fvconst2g |
|- ( ( 0 e. _V /\ 1 e. I ) -> ( ( I X. { 0 } ) ` 1 ) = 0 ) |
| 20 |
15 18 19
|
mp2an |
|- ( ( I X. { 0 } ) ` 1 ) = 0 |
| 21 |
14 20
|
eqtri |
|- ( .0. ` 1 ) = 0 |
| 22 |
21
|
a1i |
|- ( p e. P -> ( .0. ` 1 ) = 0 ) |
| 23 |
22
|
oveq2d |
|- ( p e. P -> ( ( p ` 1 ) - ( .0. ` 1 ) ) = ( ( p ` 1 ) - 0 ) ) |
| 24 |
1 3
|
rrx2pxel |
|- ( p e. P -> ( p ` 1 ) e. RR ) |
| 25 |
24
|
recnd |
|- ( p e. P -> ( p ` 1 ) e. CC ) |
| 26 |
25
|
subid1d |
|- ( p e. P -> ( ( p ` 1 ) - 0 ) = ( p ` 1 ) ) |
| 27 |
23 26
|
eqtrd |
|- ( p e. P -> ( ( p ` 1 ) - ( .0. ` 1 ) ) = ( p ` 1 ) ) |
| 28 |
27
|
oveq1d |
|- ( p e. P -> ( ( ( p ` 1 ) - ( .0. ` 1 ) ) ^ 2 ) = ( ( p ` 1 ) ^ 2 ) ) |
| 29 |
5
|
fveq1i |
|- ( .0. ` 2 ) = ( ( I X. { 0 } ) ` 2 ) |
| 30 |
|
2ex |
|- 2 e. _V |
| 31 |
30
|
prid2 |
|- 2 e. { 1 , 2 } |
| 32 |
31 1
|
eleqtrri |
|- 2 e. I |
| 33 |
|
fvconst2g |
|- ( ( 0 e. _V /\ 2 e. I ) -> ( ( I X. { 0 } ) ` 2 ) = 0 ) |
| 34 |
15 32 33
|
mp2an |
|- ( ( I X. { 0 } ) ` 2 ) = 0 |
| 35 |
29 34
|
eqtri |
|- ( .0. ` 2 ) = 0 |
| 36 |
35
|
a1i |
|- ( p e. P -> ( .0. ` 2 ) = 0 ) |
| 37 |
36
|
oveq2d |
|- ( p e. P -> ( ( p ` 2 ) - ( .0. ` 2 ) ) = ( ( p ` 2 ) - 0 ) ) |
| 38 |
1 3
|
rrx2pyel |
|- ( p e. P -> ( p ` 2 ) e. RR ) |
| 39 |
38
|
recnd |
|- ( p e. P -> ( p ` 2 ) e. CC ) |
| 40 |
39
|
subid1d |
|- ( p e. P -> ( ( p ` 2 ) - 0 ) = ( p ` 2 ) ) |
| 41 |
37 40
|
eqtrd |
|- ( p e. P -> ( ( p ` 2 ) - ( .0. ` 2 ) ) = ( p ` 2 ) ) |
| 42 |
41
|
oveq1d |
|- ( p e. P -> ( ( ( p ` 2 ) - ( .0. ` 2 ) ) ^ 2 ) = ( ( p ` 2 ) ^ 2 ) ) |
| 43 |
28 42
|
oveq12d |
|- ( p e. P -> ( ( ( ( p ` 1 ) - ( .0. ` 1 ) ) ^ 2 ) + ( ( ( p ` 2 ) - ( .0. ` 2 ) ) ^ 2 ) ) = ( ( ( p ` 1 ) ^ 2 ) + ( ( p ` 2 ) ^ 2 ) ) ) |
| 44 |
43
|
eqeq1d |
|- ( p e. P -> ( ( ( ( ( p ` 1 ) - ( .0. ` 1 ) ) ^ 2 ) + ( ( ( p ` 2 ) - ( .0. ` 2 ) ) ^ 2 ) ) = ( R ^ 2 ) <-> ( ( ( p ` 1 ) ^ 2 ) + ( ( p ` 2 ) ^ 2 ) ) = ( R ^ 2 ) ) ) |
| 45 |
44
|
adantl |
|- ( ( R e. ( 0 [,) +oo ) /\ p e. P ) -> ( ( ( ( ( p ` 1 ) - ( .0. ` 1 ) ) ^ 2 ) + ( ( ( p ` 2 ) - ( .0. ` 2 ) ) ^ 2 ) ) = ( R ^ 2 ) <-> ( ( ( p ` 1 ) ^ 2 ) + ( ( p ` 2 ) ^ 2 ) ) = ( R ^ 2 ) ) ) |
| 46 |
45
|
rabbidva |
|- ( R e. ( 0 [,) +oo ) -> { p e. P | ( ( ( ( p ` 1 ) - ( .0. ` 1 ) ) ^ 2 ) + ( ( ( p ` 2 ) - ( .0. ` 2 ) ) ^ 2 ) ) = ( R ^ 2 ) } = { p e. P | ( ( ( p ` 1 ) ^ 2 ) + ( ( p ` 2 ) ^ 2 ) ) = ( R ^ 2 ) } ) |
| 47 |
46 6
|
eqtr4di |
|- ( R e. ( 0 [,) +oo ) -> { p e. P | ( ( ( ( p ` 1 ) - ( .0. ` 1 ) ) ^ 2 ) + ( ( ( p ` 2 ) - ( .0. ` 2 ) ) ^ 2 ) ) = ( R ^ 2 ) } = C ) |
| 48 |
13 47
|
eqtrd |
|- ( R e. ( 0 [,) +oo ) -> ( .0. S R ) = C ) |