| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2wlkd.p |  |-  P = <" A B C "> | 
						
							| 2 |  | 2wlkd.f |  |-  F = <" J K "> | 
						
							| 3 |  | 2wlkd.s |  |-  ( ph -> ( A e. V /\ B e. V /\ C e. V ) ) | 
						
							| 4 |  | 2wlkd.n |  |-  ( ph -> ( A =/= B /\ B =/= C ) ) | 
						
							| 5 |  | 2wlkd.e |  |-  ( ph -> ( { A , B } C_ ( I ` J ) /\ { B , C } C_ ( I ` K ) ) ) | 
						
							| 6 |  | 2wlkd.v |  |-  V = ( Vtx ` G ) | 
						
							| 7 |  | 2wlkd.i |  |-  I = ( iEdg ` G ) | 
						
							| 8 |  | 2trld.n |  |-  ( ph -> J =/= K ) | 
						
							| 9 |  | 2spthd.n |  |-  ( ph -> A =/= C ) | 
						
							| 10 | 1 2 3 4 5 6 7 8 | 2trld |  |-  ( ph -> F ( Trails ` G ) P ) | 
						
							| 11 |  | 3anan32 |  |-  ( ( A =/= B /\ A =/= C /\ B =/= C ) <-> ( ( A =/= B /\ B =/= C ) /\ A =/= C ) ) | 
						
							| 12 | 4 9 11 | sylanbrc |  |-  ( ph -> ( A =/= B /\ A =/= C /\ B =/= C ) ) | 
						
							| 13 |  | funcnvs3 |  |-  ( ( ( A e. V /\ B e. V /\ C e. V ) /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) -> Fun `' <" A B C "> ) | 
						
							| 14 | 3 12 13 | syl2anc |  |-  ( ph -> Fun `' <" A B C "> ) | 
						
							| 15 | 1 | a1i |  |-  ( ph -> P = <" A B C "> ) | 
						
							| 16 | 15 | cnveqd |  |-  ( ph -> `' P = `' <" A B C "> ) | 
						
							| 17 | 16 | funeqd |  |-  ( ph -> ( Fun `' P <-> Fun `' <" A B C "> ) ) | 
						
							| 18 | 14 17 | mpbird |  |-  ( ph -> Fun `' P ) | 
						
							| 19 |  | isspth |  |-  ( F ( SPaths ` G ) P <-> ( F ( Trails ` G ) P /\ Fun `' P ) ) | 
						
							| 20 | 10 18 19 | sylanbrc |  |-  ( ph -> F ( SPaths ` G ) P ) |