Step |
Hyp |
Ref |
Expression |
1 |
|
2wlkd.p |
|- P = <" A B C "> |
2 |
|
2wlkd.f |
|- F = <" J K "> |
3 |
|
2wlkd.s |
|- ( ph -> ( A e. V /\ B e. V /\ C e. V ) ) |
4 |
|
2wlkd.n |
|- ( ph -> ( A =/= B /\ B =/= C ) ) |
5 |
|
2wlkd.e |
|- ( ph -> ( { A , B } C_ ( I ` J ) /\ { B , C } C_ ( I ` K ) ) ) |
6 |
|
2wlkd.v |
|- V = ( Vtx ` G ) |
7 |
|
2wlkd.i |
|- I = ( iEdg ` G ) |
8 |
|
2trld.n |
|- ( ph -> J =/= K ) |
9 |
|
2spthd.n |
|- ( ph -> A =/= C ) |
10 |
1 2 3 4 5 6 7 8
|
2trld |
|- ( ph -> F ( Trails ` G ) P ) |
11 |
|
3anan32 |
|- ( ( A =/= B /\ A =/= C /\ B =/= C ) <-> ( ( A =/= B /\ B =/= C ) /\ A =/= C ) ) |
12 |
4 9 11
|
sylanbrc |
|- ( ph -> ( A =/= B /\ A =/= C /\ B =/= C ) ) |
13 |
|
funcnvs3 |
|- ( ( ( A e. V /\ B e. V /\ C e. V ) /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) -> Fun `' <" A B C "> ) |
14 |
3 12 13
|
syl2anc |
|- ( ph -> Fun `' <" A B C "> ) |
15 |
1
|
a1i |
|- ( ph -> P = <" A B C "> ) |
16 |
15
|
cnveqd |
|- ( ph -> `' P = `' <" A B C "> ) |
17 |
16
|
funeqd |
|- ( ph -> ( Fun `' P <-> Fun `' <" A B C "> ) ) |
18 |
14 17
|
mpbird |
|- ( ph -> Fun `' P ) |
19 |
|
isspth |
|- ( F ( SPaths ` G ) P <-> ( F ( Trails ` G ) P /\ Fun `' P ) ) |
20 |
10 18 19
|
sylanbrc |
|- ( ph -> F ( SPaths ` G ) P ) |