Step |
Hyp |
Ref |
Expression |
1 |
|
df-ne |
|- ( P =/= 2 <-> -. P = 2 ) |
2 |
|
prmz |
|- ( P e. Prime -> P e. ZZ ) |
3 |
2
|
ad3antrrr |
|- ( ( ( ( P e. Prime /\ P =/= 2 ) /\ ( x e. ZZ /\ y e. ZZ ) ) /\ P = ( ( x ^ 2 ) + ( y ^ 2 ) ) ) -> P e. ZZ ) |
4 |
|
simplrr |
|- ( ( ( ( P e. Prime /\ P =/= 2 ) /\ ( x e. ZZ /\ y e. ZZ ) ) /\ P = ( ( x ^ 2 ) + ( y ^ 2 ) ) ) -> y e. ZZ ) |
5 |
|
bezout |
|- ( ( P e. ZZ /\ y e. ZZ ) -> E. a e. ZZ E. b e. ZZ ( P gcd y ) = ( ( P x. a ) + ( y x. b ) ) ) |
6 |
3 4 5
|
syl2anc |
|- ( ( ( ( P e. Prime /\ P =/= 2 ) /\ ( x e. ZZ /\ y e. ZZ ) ) /\ P = ( ( x ^ 2 ) + ( y ^ 2 ) ) ) -> E. a e. ZZ E. b e. ZZ ( P gcd y ) = ( ( P x. a ) + ( y x. b ) ) ) |
7 |
|
simplll |
|- ( ( ( ( ( P e. Prime /\ P =/= 2 ) /\ ( x e. ZZ /\ y e. ZZ ) ) /\ P = ( ( x ^ 2 ) + ( y ^ 2 ) ) ) /\ ( ( a e. ZZ /\ b e. ZZ ) /\ ( P gcd y ) = ( ( P x. a ) + ( y x. b ) ) ) ) -> ( P e. Prime /\ P =/= 2 ) ) |
8 |
|
simpllr |
|- ( ( ( ( ( P e. Prime /\ P =/= 2 ) /\ ( x e. ZZ /\ y e. ZZ ) ) /\ P = ( ( x ^ 2 ) + ( y ^ 2 ) ) ) /\ ( ( a e. ZZ /\ b e. ZZ ) /\ ( P gcd y ) = ( ( P x. a ) + ( y x. b ) ) ) ) -> ( x e. ZZ /\ y e. ZZ ) ) |
9 |
|
simplr |
|- ( ( ( ( ( P e. Prime /\ P =/= 2 ) /\ ( x e. ZZ /\ y e. ZZ ) ) /\ P = ( ( x ^ 2 ) + ( y ^ 2 ) ) ) /\ ( ( a e. ZZ /\ b e. ZZ ) /\ ( P gcd y ) = ( ( P x. a ) + ( y x. b ) ) ) ) -> P = ( ( x ^ 2 ) + ( y ^ 2 ) ) ) |
10 |
|
simprll |
|- ( ( ( ( ( P e. Prime /\ P =/= 2 ) /\ ( x e. ZZ /\ y e. ZZ ) ) /\ P = ( ( x ^ 2 ) + ( y ^ 2 ) ) ) /\ ( ( a e. ZZ /\ b e. ZZ ) /\ ( P gcd y ) = ( ( P x. a ) + ( y x. b ) ) ) ) -> a e. ZZ ) |
11 |
|
simprlr |
|- ( ( ( ( ( P e. Prime /\ P =/= 2 ) /\ ( x e. ZZ /\ y e. ZZ ) ) /\ P = ( ( x ^ 2 ) + ( y ^ 2 ) ) ) /\ ( ( a e. ZZ /\ b e. ZZ ) /\ ( P gcd y ) = ( ( P x. a ) + ( y x. b ) ) ) ) -> b e. ZZ ) |
12 |
|
simprr |
|- ( ( ( ( ( P e. Prime /\ P =/= 2 ) /\ ( x e. ZZ /\ y e. ZZ ) ) /\ P = ( ( x ^ 2 ) + ( y ^ 2 ) ) ) /\ ( ( a e. ZZ /\ b e. ZZ ) /\ ( P gcd y ) = ( ( P x. a ) + ( y x. b ) ) ) ) -> ( P gcd y ) = ( ( P x. a ) + ( y x. b ) ) ) |
13 |
7 8 9 10 11 12
|
2sqblem |
|- ( ( ( ( ( P e. Prime /\ P =/= 2 ) /\ ( x e. ZZ /\ y e. ZZ ) ) /\ P = ( ( x ^ 2 ) + ( y ^ 2 ) ) ) /\ ( ( a e. ZZ /\ b e. ZZ ) /\ ( P gcd y ) = ( ( P x. a ) + ( y x. b ) ) ) ) -> ( P mod 4 ) = 1 ) |
14 |
13
|
expr |
|- ( ( ( ( ( P e. Prime /\ P =/= 2 ) /\ ( x e. ZZ /\ y e. ZZ ) ) /\ P = ( ( x ^ 2 ) + ( y ^ 2 ) ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( P gcd y ) = ( ( P x. a ) + ( y x. b ) ) -> ( P mod 4 ) = 1 ) ) |
15 |
14
|
rexlimdvva |
|- ( ( ( ( P e. Prime /\ P =/= 2 ) /\ ( x e. ZZ /\ y e. ZZ ) ) /\ P = ( ( x ^ 2 ) + ( y ^ 2 ) ) ) -> ( E. a e. ZZ E. b e. ZZ ( P gcd y ) = ( ( P x. a ) + ( y x. b ) ) -> ( P mod 4 ) = 1 ) ) |
16 |
6 15
|
mpd |
|- ( ( ( ( P e. Prime /\ P =/= 2 ) /\ ( x e. ZZ /\ y e. ZZ ) ) /\ P = ( ( x ^ 2 ) + ( y ^ 2 ) ) ) -> ( P mod 4 ) = 1 ) |
17 |
16
|
ex |
|- ( ( ( P e. Prime /\ P =/= 2 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( P = ( ( x ^ 2 ) + ( y ^ 2 ) ) -> ( P mod 4 ) = 1 ) ) |
18 |
17
|
rexlimdvva |
|- ( ( P e. Prime /\ P =/= 2 ) -> ( E. x e. ZZ E. y e. ZZ P = ( ( x ^ 2 ) + ( y ^ 2 ) ) -> ( P mod 4 ) = 1 ) ) |
19 |
18
|
impancom |
|- ( ( P e. Prime /\ E. x e. ZZ E. y e. ZZ P = ( ( x ^ 2 ) + ( y ^ 2 ) ) ) -> ( P =/= 2 -> ( P mod 4 ) = 1 ) ) |
20 |
1 19
|
syl5bir |
|- ( ( P e. Prime /\ E. x e. ZZ E. y e. ZZ P = ( ( x ^ 2 ) + ( y ^ 2 ) ) ) -> ( -. P = 2 -> ( P mod 4 ) = 1 ) ) |
21 |
20
|
orrd |
|- ( ( P e. Prime /\ E. x e. ZZ E. y e. ZZ P = ( ( x ^ 2 ) + ( y ^ 2 ) ) ) -> ( P = 2 \/ ( P mod 4 ) = 1 ) ) |
22 |
|
1z |
|- 1 e. ZZ |
23 |
|
oveq1 |
|- ( x = 1 -> ( x ^ 2 ) = ( 1 ^ 2 ) ) |
24 |
|
sq1 |
|- ( 1 ^ 2 ) = 1 |
25 |
23 24
|
eqtrdi |
|- ( x = 1 -> ( x ^ 2 ) = 1 ) |
26 |
25
|
oveq1d |
|- ( x = 1 -> ( ( x ^ 2 ) + ( y ^ 2 ) ) = ( 1 + ( y ^ 2 ) ) ) |
27 |
26
|
eqeq2d |
|- ( x = 1 -> ( P = ( ( x ^ 2 ) + ( y ^ 2 ) ) <-> P = ( 1 + ( y ^ 2 ) ) ) ) |
28 |
|
oveq1 |
|- ( y = 1 -> ( y ^ 2 ) = ( 1 ^ 2 ) ) |
29 |
28 24
|
eqtrdi |
|- ( y = 1 -> ( y ^ 2 ) = 1 ) |
30 |
29
|
oveq2d |
|- ( y = 1 -> ( 1 + ( y ^ 2 ) ) = ( 1 + 1 ) ) |
31 |
|
1p1e2 |
|- ( 1 + 1 ) = 2 |
32 |
30 31
|
eqtrdi |
|- ( y = 1 -> ( 1 + ( y ^ 2 ) ) = 2 ) |
33 |
32
|
eqeq2d |
|- ( y = 1 -> ( P = ( 1 + ( y ^ 2 ) ) <-> P = 2 ) ) |
34 |
27 33
|
rspc2ev |
|- ( ( 1 e. ZZ /\ 1 e. ZZ /\ P = 2 ) -> E. x e. ZZ E. y e. ZZ P = ( ( x ^ 2 ) + ( y ^ 2 ) ) ) |
35 |
22 22 34
|
mp3an12 |
|- ( P = 2 -> E. x e. ZZ E. y e. ZZ P = ( ( x ^ 2 ) + ( y ^ 2 ) ) ) |
36 |
35
|
adantl |
|- ( ( P e. Prime /\ P = 2 ) -> E. x e. ZZ E. y e. ZZ P = ( ( x ^ 2 ) + ( y ^ 2 ) ) ) |
37 |
|
2sq |
|- ( ( P e. Prime /\ ( P mod 4 ) = 1 ) -> E. x e. ZZ E. y e. ZZ P = ( ( x ^ 2 ) + ( y ^ 2 ) ) ) |
38 |
36 37
|
jaodan |
|- ( ( P e. Prime /\ ( P = 2 \/ ( P mod 4 ) = 1 ) ) -> E. x e. ZZ E. y e. ZZ P = ( ( x ^ 2 ) + ( y ^ 2 ) ) ) |
39 |
21 38
|
impbida |
|- ( P e. Prime -> ( E. x e. ZZ E. y e. ZZ P = ( ( x ^ 2 ) + ( y ^ 2 ) ) <-> ( P = 2 \/ ( P mod 4 ) = 1 ) ) ) |