| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-ne |  |-  ( P =/= 2 <-> -. P = 2 ) | 
						
							| 2 |  | prmz |  |-  ( P e. Prime -> P e. ZZ ) | 
						
							| 3 | 2 | ad3antrrr |  |-  ( ( ( ( P e. Prime /\ P =/= 2 ) /\ ( x e. ZZ /\ y e. ZZ ) ) /\ P = ( ( x ^ 2 ) + ( y ^ 2 ) ) ) -> P e. ZZ ) | 
						
							| 4 |  | simplrr |  |-  ( ( ( ( P e. Prime /\ P =/= 2 ) /\ ( x e. ZZ /\ y e. ZZ ) ) /\ P = ( ( x ^ 2 ) + ( y ^ 2 ) ) ) -> y e. ZZ ) | 
						
							| 5 |  | bezout |  |-  ( ( P e. ZZ /\ y e. ZZ ) -> E. a e. ZZ E. b e. ZZ ( P gcd y ) = ( ( P x. a ) + ( y x. b ) ) ) | 
						
							| 6 | 3 4 5 | syl2anc |  |-  ( ( ( ( P e. Prime /\ P =/= 2 ) /\ ( x e. ZZ /\ y e. ZZ ) ) /\ P = ( ( x ^ 2 ) + ( y ^ 2 ) ) ) -> E. a e. ZZ E. b e. ZZ ( P gcd y ) = ( ( P x. a ) + ( y x. b ) ) ) | 
						
							| 7 |  | simplll |  |-  ( ( ( ( ( P e. Prime /\ P =/= 2 ) /\ ( x e. ZZ /\ y e. ZZ ) ) /\ P = ( ( x ^ 2 ) + ( y ^ 2 ) ) ) /\ ( ( a e. ZZ /\ b e. ZZ ) /\ ( P gcd y ) = ( ( P x. a ) + ( y x. b ) ) ) ) -> ( P e. Prime /\ P =/= 2 ) ) | 
						
							| 8 |  | simpllr |  |-  ( ( ( ( ( P e. Prime /\ P =/= 2 ) /\ ( x e. ZZ /\ y e. ZZ ) ) /\ P = ( ( x ^ 2 ) + ( y ^ 2 ) ) ) /\ ( ( a e. ZZ /\ b e. ZZ ) /\ ( P gcd y ) = ( ( P x. a ) + ( y x. b ) ) ) ) -> ( x e. ZZ /\ y e. ZZ ) ) | 
						
							| 9 |  | simplr |  |-  ( ( ( ( ( P e. Prime /\ P =/= 2 ) /\ ( x e. ZZ /\ y e. ZZ ) ) /\ P = ( ( x ^ 2 ) + ( y ^ 2 ) ) ) /\ ( ( a e. ZZ /\ b e. ZZ ) /\ ( P gcd y ) = ( ( P x. a ) + ( y x. b ) ) ) ) -> P = ( ( x ^ 2 ) + ( y ^ 2 ) ) ) | 
						
							| 10 |  | simprll |  |-  ( ( ( ( ( P e. Prime /\ P =/= 2 ) /\ ( x e. ZZ /\ y e. ZZ ) ) /\ P = ( ( x ^ 2 ) + ( y ^ 2 ) ) ) /\ ( ( a e. ZZ /\ b e. ZZ ) /\ ( P gcd y ) = ( ( P x. a ) + ( y x. b ) ) ) ) -> a e. ZZ ) | 
						
							| 11 |  | simprlr |  |-  ( ( ( ( ( P e. Prime /\ P =/= 2 ) /\ ( x e. ZZ /\ y e. ZZ ) ) /\ P = ( ( x ^ 2 ) + ( y ^ 2 ) ) ) /\ ( ( a e. ZZ /\ b e. ZZ ) /\ ( P gcd y ) = ( ( P x. a ) + ( y x. b ) ) ) ) -> b e. ZZ ) | 
						
							| 12 |  | simprr |  |-  ( ( ( ( ( P e. Prime /\ P =/= 2 ) /\ ( x e. ZZ /\ y e. ZZ ) ) /\ P = ( ( x ^ 2 ) + ( y ^ 2 ) ) ) /\ ( ( a e. ZZ /\ b e. ZZ ) /\ ( P gcd y ) = ( ( P x. a ) + ( y x. b ) ) ) ) -> ( P gcd y ) = ( ( P x. a ) + ( y x. b ) ) ) | 
						
							| 13 | 7 8 9 10 11 12 | 2sqblem |  |-  ( ( ( ( ( P e. Prime /\ P =/= 2 ) /\ ( x e. ZZ /\ y e. ZZ ) ) /\ P = ( ( x ^ 2 ) + ( y ^ 2 ) ) ) /\ ( ( a e. ZZ /\ b e. ZZ ) /\ ( P gcd y ) = ( ( P x. a ) + ( y x. b ) ) ) ) -> ( P mod 4 ) = 1 ) | 
						
							| 14 | 13 | expr |  |-  ( ( ( ( ( P e. Prime /\ P =/= 2 ) /\ ( x e. ZZ /\ y e. ZZ ) ) /\ P = ( ( x ^ 2 ) + ( y ^ 2 ) ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( P gcd y ) = ( ( P x. a ) + ( y x. b ) ) -> ( P mod 4 ) = 1 ) ) | 
						
							| 15 | 14 | rexlimdvva |  |-  ( ( ( ( P e. Prime /\ P =/= 2 ) /\ ( x e. ZZ /\ y e. ZZ ) ) /\ P = ( ( x ^ 2 ) + ( y ^ 2 ) ) ) -> ( E. a e. ZZ E. b e. ZZ ( P gcd y ) = ( ( P x. a ) + ( y x. b ) ) -> ( P mod 4 ) = 1 ) ) | 
						
							| 16 | 6 15 | mpd |  |-  ( ( ( ( P e. Prime /\ P =/= 2 ) /\ ( x e. ZZ /\ y e. ZZ ) ) /\ P = ( ( x ^ 2 ) + ( y ^ 2 ) ) ) -> ( P mod 4 ) = 1 ) | 
						
							| 17 | 16 | ex |  |-  ( ( ( P e. Prime /\ P =/= 2 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( P = ( ( x ^ 2 ) + ( y ^ 2 ) ) -> ( P mod 4 ) = 1 ) ) | 
						
							| 18 | 17 | rexlimdvva |  |-  ( ( P e. Prime /\ P =/= 2 ) -> ( E. x e. ZZ E. y e. ZZ P = ( ( x ^ 2 ) + ( y ^ 2 ) ) -> ( P mod 4 ) = 1 ) ) | 
						
							| 19 | 18 | impancom |  |-  ( ( P e. Prime /\ E. x e. ZZ E. y e. ZZ P = ( ( x ^ 2 ) + ( y ^ 2 ) ) ) -> ( P =/= 2 -> ( P mod 4 ) = 1 ) ) | 
						
							| 20 | 1 19 | biimtrrid |  |-  ( ( P e. Prime /\ E. x e. ZZ E. y e. ZZ P = ( ( x ^ 2 ) + ( y ^ 2 ) ) ) -> ( -. P = 2 -> ( P mod 4 ) = 1 ) ) | 
						
							| 21 | 20 | orrd |  |-  ( ( P e. Prime /\ E. x e. ZZ E. y e. ZZ P = ( ( x ^ 2 ) + ( y ^ 2 ) ) ) -> ( P = 2 \/ ( P mod 4 ) = 1 ) ) | 
						
							| 22 |  | 1z |  |-  1 e. ZZ | 
						
							| 23 |  | oveq1 |  |-  ( x = 1 -> ( x ^ 2 ) = ( 1 ^ 2 ) ) | 
						
							| 24 |  | sq1 |  |-  ( 1 ^ 2 ) = 1 | 
						
							| 25 | 23 24 | eqtrdi |  |-  ( x = 1 -> ( x ^ 2 ) = 1 ) | 
						
							| 26 | 25 | oveq1d |  |-  ( x = 1 -> ( ( x ^ 2 ) + ( y ^ 2 ) ) = ( 1 + ( y ^ 2 ) ) ) | 
						
							| 27 | 26 | eqeq2d |  |-  ( x = 1 -> ( P = ( ( x ^ 2 ) + ( y ^ 2 ) ) <-> P = ( 1 + ( y ^ 2 ) ) ) ) | 
						
							| 28 |  | oveq1 |  |-  ( y = 1 -> ( y ^ 2 ) = ( 1 ^ 2 ) ) | 
						
							| 29 | 28 24 | eqtrdi |  |-  ( y = 1 -> ( y ^ 2 ) = 1 ) | 
						
							| 30 | 29 | oveq2d |  |-  ( y = 1 -> ( 1 + ( y ^ 2 ) ) = ( 1 + 1 ) ) | 
						
							| 31 |  | 1p1e2 |  |-  ( 1 + 1 ) = 2 | 
						
							| 32 | 30 31 | eqtrdi |  |-  ( y = 1 -> ( 1 + ( y ^ 2 ) ) = 2 ) | 
						
							| 33 | 32 | eqeq2d |  |-  ( y = 1 -> ( P = ( 1 + ( y ^ 2 ) ) <-> P = 2 ) ) | 
						
							| 34 | 27 33 | rspc2ev |  |-  ( ( 1 e. ZZ /\ 1 e. ZZ /\ P = 2 ) -> E. x e. ZZ E. y e. ZZ P = ( ( x ^ 2 ) + ( y ^ 2 ) ) ) | 
						
							| 35 | 22 22 34 | mp3an12 |  |-  ( P = 2 -> E. x e. ZZ E. y e. ZZ P = ( ( x ^ 2 ) + ( y ^ 2 ) ) ) | 
						
							| 36 | 35 | adantl |  |-  ( ( P e. Prime /\ P = 2 ) -> E. x e. ZZ E. y e. ZZ P = ( ( x ^ 2 ) + ( y ^ 2 ) ) ) | 
						
							| 37 |  | 2sq |  |-  ( ( P e. Prime /\ ( P mod 4 ) = 1 ) -> E. x e. ZZ E. y e. ZZ P = ( ( x ^ 2 ) + ( y ^ 2 ) ) ) | 
						
							| 38 | 36 37 | jaodan |  |-  ( ( P e. Prime /\ ( P = 2 \/ ( P mod 4 ) = 1 ) ) -> E. x e. ZZ E. y e. ZZ P = ( ( x ^ 2 ) + ( y ^ 2 ) ) ) | 
						
							| 39 | 21 38 | impbida |  |-  ( P e. Prime -> ( E. x e. ZZ E. y e. ZZ P = ( ( x ^ 2 ) + ( y ^ 2 ) ) <-> ( P = 2 \/ ( P mod 4 ) = 1 ) ) ) |