| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2sqb.1 |  |-  ( ph -> ( P e. Prime /\ P =/= 2 ) ) | 
						
							| 2 |  | 2sqb.2 |  |-  ( ph -> ( X e. ZZ /\ Y e. ZZ ) ) | 
						
							| 3 |  | 2sqb.3 |  |-  ( ph -> P = ( ( X ^ 2 ) + ( Y ^ 2 ) ) ) | 
						
							| 4 |  | 2sqb.4 |  |-  ( ph -> A e. ZZ ) | 
						
							| 5 |  | 2sqb.5 |  |-  ( ph -> B e. ZZ ) | 
						
							| 6 |  | 2sqb.6 |  |-  ( ph -> ( P gcd Y ) = ( ( P x. A ) + ( Y x. B ) ) ) | 
						
							| 7 | 1 | simpld |  |-  ( ph -> P e. Prime ) | 
						
							| 8 |  | nprmdvds1 |  |-  ( P e. Prime -> -. P || 1 ) | 
						
							| 9 | 7 8 | syl |  |-  ( ph -> -. P || 1 ) | 
						
							| 10 |  | prmz |  |-  ( P e. Prime -> P e. ZZ ) | 
						
							| 11 | 7 10 | syl |  |-  ( ph -> P e. ZZ ) | 
						
							| 12 |  | 1z |  |-  1 e. ZZ | 
						
							| 13 |  | dvdsnegb |  |-  ( ( P e. ZZ /\ 1 e. ZZ ) -> ( P || 1 <-> P || -u 1 ) ) | 
						
							| 14 | 11 12 13 | sylancl |  |-  ( ph -> ( P || 1 <-> P || -u 1 ) ) | 
						
							| 15 | 9 14 | mtbid |  |-  ( ph -> -. P || -u 1 ) | 
						
							| 16 | 2 | simpld |  |-  ( ph -> X e. ZZ ) | 
						
							| 17 | 16 5 | zmulcld |  |-  ( ph -> ( X x. B ) e. ZZ ) | 
						
							| 18 |  | zsqcl |  |-  ( B e. ZZ -> ( B ^ 2 ) e. ZZ ) | 
						
							| 19 | 5 18 | syl |  |-  ( ph -> ( B ^ 2 ) e. ZZ ) | 
						
							| 20 |  | dvdsmul1 |  |-  ( ( P e. ZZ /\ ( B ^ 2 ) e. ZZ ) -> P || ( P x. ( B ^ 2 ) ) ) | 
						
							| 21 | 11 19 20 | syl2anc |  |-  ( ph -> P || ( P x. ( B ^ 2 ) ) ) | 
						
							| 22 | 2 | simprd |  |-  ( ph -> Y e. ZZ ) | 
						
							| 23 | 22 5 | zmulcld |  |-  ( ph -> ( Y x. B ) e. ZZ ) | 
						
							| 24 |  | zsqcl |  |-  ( ( Y x. B ) e. ZZ -> ( ( Y x. B ) ^ 2 ) e. ZZ ) | 
						
							| 25 | 23 24 | syl |  |-  ( ph -> ( ( Y x. B ) ^ 2 ) e. ZZ ) | 
						
							| 26 |  | peano2zm |  |-  ( ( ( Y x. B ) ^ 2 ) e. ZZ -> ( ( ( Y x. B ) ^ 2 ) - 1 ) e. ZZ ) | 
						
							| 27 | 25 26 | syl |  |-  ( ph -> ( ( ( Y x. B ) ^ 2 ) - 1 ) e. ZZ ) | 
						
							| 28 | 27 | zcnd |  |-  ( ph -> ( ( ( Y x. B ) ^ 2 ) - 1 ) e. CC ) | 
						
							| 29 |  | zsqcl |  |-  ( ( X x. B ) e. ZZ -> ( ( X x. B ) ^ 2 ) e. ZZ ) | 
						
							| 30 | 17 29 | syl |  |-  ( ph -> ( ( X x. B ) ^ 2 ) e. ZZ ) | 
						
							| 31 | 30 | peano2zd |  |-  ( ph -> ( ( ( X x. B ) ^ 2 ) + 1 ) e. ZZ ) | 
						
							| 32 | 31 | zcnd |  |-  ( ph -> ( ( ( X x. B ) ^ 2 ) + 1 ) e. CC ) | 
						
							| 33 | 28 32 | addcomd |  |-  ( ph -> ( ( ( ( Y x. B ) ^ 2 ) - 1 ) + ( ( ( X x. B ) ^ 2 ) + 1 ) ) = ( ( ( ( X x. B ) ^ 2 ) + 1 ) + ( ( ( Y x. B ) ^ 2 ) - 1 ) ) ) | 
						
							| 34 | 30 | zcnd |  |-  ( ph -> ( ( X x. B ) ^ 2 ) e. CC ) | 
						
							| 35 |  | ax-1cn |  |-  1 e. CC | 
						
							| 36 | 35 | a1i |  |-  ( ph -> 1 e. CC ) | 
						
							| 37 | 25 | zcnd |  |-  ( ph -> ( ( Y x. B ) ^ 2 ) e. CC ) | 
						
							| 38 | 34 36 37 | ppncand |  |-  ( ph -> ( ( ( ( X x. B ) ^ 2 ) + 1 ) + ( ( ( Y x. B ) ^ 2 ) - 1 ) ) = ( ( ( X x. B ) ^ 2 ) + ( ( Y x. B ) ^ 2 ) ) ) | 
						
							| 39 |  | zsqcl |  |-  ( X e. ZZ -> ( X ^ 2 ) e. ZZ ) | 
						
							| 40 | 16 39 | syl |  |-  ( ph -> ( X ^ 2 ) e. ZZ ) | 
						
							| 41 | 40 | zcnd |  |-  ( ph -> ( X ^ 2 ) e. CC ) | 
						
							| 42 |  | zsqcl |  |-  ( Y e. ZZ -> ( Y ^ 2 ) e. ZZ ) | 
						
							| 43 | 22 42 | syl |  |-  ( ph -> ( Y ^ 2 ) e. ZZ ) | 
						
							| 44 | 43 | zcnd |  |-  ( ph -> ( Y ^ 2 ) e. CC ) | 
						
							| 45 | 19 | zcnd |  |-  ( ph -> ( B ^ 2 ) e. CC ) | 
						
							| 46 | 41 44 45 | adddird |  |-  ( ph -> ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) x. ( B ^ 2 ) ) = ( ( ( X ^ 2 ) x. ( B ^ 2 ) ) + ( ( Y ^ 2 ) x. ( B ^ 2 ) ) ) ) | 
						
							| 47 | 3 | oveq1d |  |-  ( ph -> ( P x. ( B ^ 2 ) ) = ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) x. ( B ^ 2 ) ) ) | 
						
							| 48 | 16 | zcnd |  |-  ( ph -> X e. CC ) | 
						
							| 49 | 5 | zcnd |  |-  ( ph -> B e. CC ) | 
						
							| 50 | 48 49 | sqmuld |  |-  ( ph -> ( ( X x. B ) ^ 2 ) = ( ( X ^ 2 ) x. ( B ^ 2 ) ) ) | 
						
							| 51 | 22 | zcnd |  |-  ( ph -> Y e. CC ) | 
						
							| 52 | 51 49 | sqmuld |  |-  ( ph -> ( ( Y x. B ) ^ 2 ) = ( ( Y ^ 2 ) x. ( B ^ 2 ) ) ) | 
						
							| 53 | 50 52 | oveq12d |  |-  ( ph -> ( ( ( X x. B ) ^ 2 ) + ( ( Y x. B ) ^ 2 ) ) = ( ( ( X ^ 2 ) x. ( B ^ 2 ) ) + ( ( Y ^ 2 ) x. ( B ^ 2 ) ) ) ) | 
						
							| 54 | 46 47 53 | 3eqtr4rd |  |-  ( ph -> ( ( ( X x. B ) ^ 2 ) + ( ( Y x. B ) ^ 2 ) ) = ( P x. ( B ^ 2 ) ) ) | 
						
							| 55 | 33 38 54 | 3eqtrd |  |-  ( ph -> ( ( ( ( Y x. B ) ^ 2 ) - 1 ) + ( ( ( X x. B ) ^ 2 ) + 1 ) ) = ( P x. ( B ^ 2 ) ) ) | 
						
							| 56 | 21 55 | breqtrrd |  |-  ( ph -> P || ( ( ( ( Y x. B ) ^ 2 ) - 1 ) + ( ( ( X x. B ) ^ 2 ) + 1 ) ) ) | 
						
							| 57 |  | dvdsmul1 |  |-  ( ( P e. ZZ /\ A e. ZZ ) -> P || ( P x. A ) ) | 
						
							| 58 | 11 4 57 | syl2anc |  |-  ( ph -> P || ( P x. A ) ) | 
						
							| 59 | 11 4 | zmulcld |  |-  ( ph -> ( P x. A ) e. ZZ ) | 
						
							| 60 |  | dvdsnegb |  |-  ( ( P e. ZZ /\ ( P x. A ) e. ZZ ) -> ( P || ( P x. A ) <-> P || -u ( P x. A ) ) ) | 
						
							| 61 | 11 59 60 | syl2anc |  |-  ( ph -> ( P || ( P x. A ) <-> P || -u ( P x. A ) ) ) | 
						
							| 62 | 58 61 | mpbid |  |-  ( ph -> P || -u ( P x. A ) ) | 
						
							| 63 | 23 | zcnd |  |-  ( ph -> ( Y x. B ) e. CC ) | 
						
							| 64 |  | negsubdi2 |  |-  ( ( 1 e. CC /\ ( Y x. B ) e. CC ) -> -u ( 1 - ( Y x. B ) ) = ( ( Y x. B ) - 1 ) ) | 
						
							| 65 | 35 63 64 | sylancr |  |-  ( ph -> -u ( 1 - ( Y x. B ) ) = ( ( Y x. B ) - 1 ) ) | 
						
							| 66 | 59 | zcnd |  |-  ( ph -> ( P x. A ) e. CC ) | 
						
							| 67 | 22 | zred |  |-  ( ph -> Y e. RR ) | 
						
							| 68 |  | absresq |  |-  ( Y e. RR -> ( ( abs ` Y ) ^ 2 ) = ( Y ^ 2 ) ) | 
						
							| 69 | 67 68 | syl |  |-  ( ph -> ( ( abs ` Y ) ^ 2 ) = ( Y ^ 2 ) ) | 
						
							| 70 | 67 | resqcld |  |-  ( ph -> ( Y ^ 2 ) e. RR ) | 
						
							| 71 |  | prmnn |  |-  ( P e. Prime -> P e. NN ) | 
						
							| 72 | 7 71 | syl |  |-  ( ph -> P e. NN ) | 
						
							| 73 | 72 | nnred |  |-  ( ph -> P e. RR ) | 
						
							| 74 | 73 | resqcld |  |-  ( ph -> ( P ^ 2 ) e. RR ) | 
						
							| 75 |  | zsqcl2 |  |-  ( X e. ZZ -> ( X ^ 2 ) e. NN0 ) | 
						
							| 76 | 16 75 | syl |  |-  ( ph -> ( X ^ 2 ) e. NN0 ) | 
						
							| 77 |  | nn0addge2 |  |-  ( ( ( Y ^ 2 ) e. RR /\ ( X ^ 2 ) e. NN0 ) -> ( Y ^ 2 ) <_ ( ( X ^ 2 ) + ( Y ^ 2 ) ) ) | 
						
							| 78 | 70 76 77 | syl2anc |  |-  ( ph -> ( Y ^ 2 ) <_ ( ( X ^ 2 ) + ( Y ^ 2 ) ) ) | 
						
							| 79 | 78 3 | breqtrrd |  |-  ( ph -> ( Y ^ 2 ) <_ P ) | 
						
							| 80 | 11 | zcnd |  |-  ( ph -> P e. CC ) | 
						
							| 81 | 80 | exp1d |  |-  ( ph -> ( P ^ 1 ) = P ) | 
						
							| 82 | 12 | a1i |  |-  ( ph -> 1 e. ZZ ) | 
						
							| 83 |  | 2z |  |-  2 e. ZZ | 
						
							| 84 | 83 | a1i |  |-  ( ph -> 2 e. ZZ ) | 
						
							| 85 |  | prmuz2 |  |-  ( P e. Prime -> P e. ( ZZ>= ` 2 ) ) | 
						
							| 86 | 7 85 | syl |  |-  ( ph -> P e. ( ZZ>= ` 2 ) ) | 
						
							| 87 |  | eluz2gt1 |  |-  ( P e. ( ZZ>= ` 2 ) -> 1 < P ) | 
						
							| 88 | 86 87 | syl |  |-  ( ph -> 1 < P ) | 
						
							| 89 |  | 1lt2 |  |-  1 < 2 | 
						
							| 90 | 89 | a1i |  |-  ( ph -> 1 < 2 ) | 
						
							| 91 |  | ltexp2a |  |-  ( ( ( P e. RR /\ 1 e. ZZ /\ 2 e. ZZ ) /\ ( 1 < P /\ 1 < 2 ) ) -> ( P ^ 1 ) < ( P ^ 2 ) ) | 
						
							| 92 | 73 82 84 88 90 91 | syl32anc |  |-  ( ph -> ( P ^ 1 ) < ( P ^ 2 ) ) | 
						
							| 93 | 81 92 | eqbrtrrd |  |-  ( ph -> P < ( P ^ 2 ) ) | 
						
							| 94 | 70 73 74 79 93 | lelttrd |  |-  ( ph -> ( Y ^ 2 ) < ( P ^ 2 ) ) | 
						
							| 95 | 69 94 | eqbrtrd |  |-  ( ph -> ( ( abs ` Y ) ^ 2 ) < ( P ^ 2 ) ) | 
						
							| 96 | 51 | abscld |  |-  ( ph -> ( abs ` Y ) e. RR ) | 
						
							| 97 | 51 | absge0d |  |-  ( ph -> 0 <_ ( abs ` Y ) ) | 
						
							| 98 | 72 | nnnn0d |  |-  ( ph -> P e. NN0 ) | 
						
							| 99 | 98 | nn0ge0d |  |-  ( ph -> 0 <_ P ) | 
						
							| 100 | 96 73 97 99 | lt2sqd |  |-  ( ph -> ( ( abs ` Y ) < P <-> ( ( abs ` Y ) ^ 2 ) < ( P ^ 2 ) ) ) | 
						
							| 101 | 95 100 | mpbird |  |-  ( ph -> ( abs ` Y ) < P ) | 
						
							| 102 | 11 | zred |  |-  ( ph -> P e. RR ) | 
						
							| 103 | 96 102 | ltnled |  |-  ( ph -> ( ( abs ` Y ) < P <-> -. P <_ ( abs ` Y ) ) ) | 
						
							| 104 | 101 103 | mpbid |  |-  ( ph -> -. P <_ ( abs ` Y ) ) | 
						
							| 105 |  | sqnprm |  |-  ( X e. ZZ -> -. ( X ^ 2 ) e. Prime ) | 
						
							| 106 | 16 105 | syl |  |-  ( ph -> -. ( X ^ 2 ) e. Prime ) | 
						
							| 107 | 51 | abs00ad |  |-  ( ph -> ( ( abs ` Y ) = 0 <-> Y = 0 ) ) | 
						
							| 108 | 3 7 | eqeltrrd |  |-  ( ph -> ( ( X ^ 2 ) + ( Y ^ 2 ) ) e. Prime ) | 
						
							| 109 |  | sq0i |  |-  ( Y = 0 -> ( Y ^ 2 ) = 0 ) | 
						
							| 110 | 109 | oveq2d |  |-  ( Y = 0 -> ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( ( X ^ 2 ) + 0 ) ) | 
						
							| 111 | 110 | eleq1d |  |-  ( Y = 0 -> ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) e. Prime <-> ( ( X ^ 2 ) + 0 ) e. Prime ) ) | 
						
							| 112 | 108 111 | syl5ibcom |  |-  ( ph -> ( Y = 0 -> ( ( X ^ 2 ) + 0 ) e. Prime ) ) | 
						
							| 113 | 41 | addridd |  |-  ( ph -> ( ( X ^ 2 ) + 0 ) = ( X ^ 2 ) ) | 
						
							| 114 | 113 | eleq1d |  |-  ( ph -> ( ( ( X ^ 2 ) + 0 ) e. Prime <-> ( X ^ 2 ) e. Prime ) ) | 
						
							| 115 | 112 114 | sylibd |  |-  ( ph -> ( Y = 0 -> ( X ^ 2 ) e. Prime ) ) | 
						
							| 116 | 107 115 | sylbid |  |-  ( ph -> ( ( abs ` Y ) = 0 -> ( X ^ 2 ) e. Prime ) ) | 
						
							| 117 | 106 116 | mtod |  |-  ( ph -> -. ( abs ` Y ) = 0 ) | 
						
							| 118 |  | nn0abscl |  |-  ( Y e. ZZ -> ( abs ` Y ) e. NN0 ) | 
						
							| 119 | 22 118 | syl |  |-  ( ph -> ( abs ` Y ) e. NN0 ) | 
						
							| 120 |  | elnn0 |  |-  ( ( abs ` Y ) e. NN0 <-> ( ( abs ` Y ) e. NN \/ ( abs ` Y ) = 0 ) ) | 
						
							| 121 | 119 120 | sylib |  |-  ( ph -> ( ( abs ` Y ) e. NN \/ ( abs ` Y ) = 0 ) ) | 
						
							| 122 | 121 | ord |  |-  ( ph -> ( -. ( abs ` Y ) e. NN -> ( abs ` Y ) = 0 ) ) | 
						
							| 123 | 117 122 | mt3d |  |-  ( ph -> ( abs ` Y ) e. NN ) | 
						
							| 124 |  | dvdsle |  |-  ( ( P e. ZZ /\ ( abs ` Y ) e. NN ) -> ( P || ( abs ` Y ) -> P <_ ( abs ` Y ) ) ) | 
						
							| 125 | 11 123 124 | syl2anc |  |-  ( ph -> ( P || ( abs ` Y ) -> P <_ ( abs ` Y ) ) ) | 
						
							| 126 | 104 125 | mtod |  |-  ( ph -> -. P || ( abs ` Y ) ) | 
						
							| 127 |  | dvdsabsb |  |-  ( ( P e. ZZ /\ Y e. ZZ ) -> ( P || Y <-> P || ( abs ` Y ) ) ) | 
						
							| 128 | 11 22 127 | syl2anc |  |-  ( ph -> ( P || Y <-> P || ( abs ` Y ) ) ) | 
						
							| 129 | 126 128 | mtbird |  |-  ( ph -> -. P || Y ) | 
						
							| 130 |  | coprm |  |-  ( ( P e. Prime /\ Y e. ZZ ) -> ( -. P || Y <-> ( P gcd Y ) = 1 ) ) | 
						
							| 131 | 7 22 130 | syl2anc |  |-  ( ph -> ( -. P || Y <-> ( P gcd Y ) = 1 ) ) | 
						
							| 132 | 129 131 | mpbid |  |-  ( ph -> ( P gcd Y ) = 1 ) | 
						
							| 133 | 132 6 | eqtr3d |  |-  ( ph -> 1 = ( ( P x. A ) + ( Y x. B ) ) ) | 
						
							| 134 | 66 63 133 | mvrraddd |  |-  ( ph -> ( 1 - ( Y x. B ) ) = ( P x. A ) ) | 
						
							| 135 | 134 | negeqd |  |-  ( ph -> -u ( 1 - ( Y x. B ) ) = -u ( P x. A ) ) | 
						
							| 136 | 65 135 | eqtr3d |  |-  ( ph -> ( ( Y x. B ) - 1 ) = -u ( P x. A ) ) | 
						
							| 137 | 62 136 | breqtrrd |  |-  ( ph -> P || ( ( Y x. B ) - 1 ) ) | 
						
							| 138 | 23 | peano2zd |  |-  ( ph -> ( ( Y x. B ) + 1 ) e. ZZ ) | 
						
							| 139 |  | peano2zm |  |-  ( ( Y x. B ) e. ZZ -> ( ( Y x. B ) - 1 ) e. ZZ ) | 
						
							| 140 | 23 139 | syl |  |-  ( ph -> ( ( Y x. B ) - 1 ) e. ZZ ) | 
						
							| 141 |  | dvdsmultr2 |  |-  ( ( P e. ZZ /\ ( ( Y x. B ) + 1 ) e. ZZ /\ ( ( Y x. B ) - 1 ) e. ZZ ) -> ( P || ( ( Y x. B ) - 1 ) -> P || ( ( ( Y x. B ) + 1 ) x. ( ( Y x. B ) - 1 ) ) ) ) | 
						
							| 142 | 11 138 140 141 | syl3anc |  |-  ( ph -> ( P || ( ( Y x. B ) - 1 ) -> P || ( ( ( Y x. B ) + 1 ) x. ( ( Y x. B ) - 1 ) ) ) ) | 
						
							| 143 | 137 142 | mpd |  |-  ( ph -> P || ( ( ( Y x. B ) + 1 ) x. ( ( Y x. B ) - 1 ) ) ) | 
						
							| 144 |  | sq1 |  |-  ( 1 ^ 2 ) = 1 | 
						
							| 145 | 144 | oveq2i |  |-  ( ( ( Y x. B ) ^ 2 ) - ( 1 ^ 2 ) ) = ( ( ( Y x. B ) ^ 2 ) - 1 ) | 
						
							| 146 |  | subsq |  |-  ( ( ( Y x. B ) e. CC /\ 1 e. CC ) -> ( ( ( Y x. B ) ^ 2 ) - ( 1 ^ 2 ) ) = ( ( ( Y x. B ) + 1 ) x. ( ( Y x. B ) - 1 ) ) ) | 
						
							| 147 | 63 35 146 | sylancl |  |-  ( ph -> ( ( ( Y x. B ) ^ 2 ) - ( 1 ^ 2 ) ) = ( ( ( Y x. B ) + 1 ) x. ( ( Y x. B ) - 1 ) ) ) | 
						
							| 148 | 145 147 | eqtr3id |  |-  ( ph -> ( ( ( Y x. B ) ^ 2 ) - 1 ) = ( ( ( Y x. B ) + 1 ) x. ( ( Y x. B ) - 1 ) ) ) | 
						
							| 149 | 143 148 | breqtrrd |  |-  ( ph -> P || ( ( ( Y x. B ) ^ 2 ) - 1 ) ) | 
						
							| 150 |  | dvdsadd2b |  |-  ( ( P e. ZZ /\ ( ( ( X x. B ) ^ 2 ) + 1 ) e. ZZ /\ ( ( ( ( Y x. B ) ^ 2 ) - 1 ) e. ZZ /\ P || ( ( ( Y x. B ) ^ 2 ) - 1 ) ) ) -> ( P || ( ( ( X x. B ) ^ 2 ) + 1 ) <-> P || ( ( ( ( Y x. B ) ^ 2 ) - 1 ) + ( ( ( X x. B ) ^ 2 ) + 1 ) ) ) ) | 
						
							| 151 | 11 31 27 149 150 | syl112anc |  |-  ( ph -> ( P || ( ( ( X x. B ) ^ 2 ) + 1 ) <-> P || ( ( ( ( Y x. B ) ^ 2 ) - 1 ) + ( ( ( X x. B ) ^ 2 ) + 1 ) ) ) ) | 
						
							| 152 | 56 151 | mpbird |  |-  ( ph -> P || ( ( ( X x. B ) ^ 2 ) + 1 ) ) | 
						
							| 153 |  | subneg |  |-  ( ( ( ( X x. B ) ^ 2 ) e. CC /\ 1 e. CC ) -> ( ( ( X x. B ) ^ 2 ) - -u 1 ) = ( ( ( X x. B ) ^ 2 ) + 1 ) ) | 
						
							| 154 | 34 35 153 | sylancl |  |-  ( ph -> ( ( ( X x. B ) ^ 2 ) - -u 1 ) = ( ( ( X x. B ) ^ 2 ) + 1 ) ) | 
						
							| 155 | 152 154 | breqtrrd |  |-  ( ph -> P || ( ( ( X x. B ) ^ 2 ) - -u 1 ) ) | 
						
							| 156 |  | oveq1 |  |-  ( x = ( X x. B ) -> ( x ^ 2 ) = ( ( X x. B ) ^ 2 ) ) | 
						
							| 157 | 156 | oveq1d |  |-  ( x = ( X x. B ) -> ( ( x ^ 2 ) - -u 1 ) = ( ( ( X x. B ) ^ 2 ) - -u 1 ) ) | 
						
							| 158 | 157 | breq2d |  |-  ( x = ( X x. B ) -> ( P || ( ( x ^ 2 ) - -u 1 ) <-> P || ( ( ( X x. B ) ^ 2 ) - -u 1 ) ) ) | 
						
							| 159 | 158 | rspcev |  |-  ( ( ( X x. B ) e. ZZ /\ P || ( ( ( X x. B ) ^ 2 ) - -u 1 ) ) -> E. x e. ZZ P || ( ( x ^ 2 ) - -u 1 ) ) | 
						
							| 160 | 17 155 159 | syl2anc |  |-  ( ph -> E. x e. ZZ P || ( ( x ^ 2 ) - -u 1 ) ) | 
						
							| 161 |  | neg1z |  |-  -u 1 e. ZZ | 
						
							| 162 |  | eldifsn |  |-  ( P e. ( Prime \ { 2 } ) <-> ( P e. Prime /\ P =/= 2 ) ) | 
						
							| 163 | 1 162 | sylibr |  |-  ( ph -> P e. ( Prime \ { 2 } ) ) | 
						
							| 164 |  | lgsqr |  |-  ( ( -u 1 e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( ( -u 1 /L P ) = 1 <-> ( -. P || -u 1 /\ E. x e. ZZ P || ( ( x ^ 2 ) - -u 1 ) ) ) ) | 
						
							| 165 | 161 163 164 | sylancr |  |-  ( ph -> ( ( -u 1 /L P ) = 1 <-> ( -. P || -u 1 /\ E. x e. ZZ P || ( ( x ^ 2 ) - -u 1 ) ) ) ) | 
						
							| 166 | 15 160 165 | mpbir2and |  |-  ( ph -> ( -u 1 /L P ) = 1 ) | 
						
							| 167 |  | m1lgs |  |-  ( P e. ( Prime \ { 2 } ) -> ( ( -u 1 /L P ) = 1 <-> ( P mod 4 ) = 1 ) ) | 
						
							| 168 | 163 167 | syl |  |-  ( ph -> ( ( -u 1 /L P ) = 1 <-> ( P mod 4 ) = 1 ) ) | 
						
							| 169 | 166 168 | mpbid |  |-  ( ph -> ( P mod 4 ) = 1 ) |