| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2sqcoprm.1 |  |-  ( ph -> P e. Prime ) | 
						
							| 2 |  | 2sqcoprm.2 |  |-  ( ph -> A e. ZZ ) | 
						
							| 3 |  | 2sqcoprm.3 |  |-  ( ph -> B e. ZZ ) | 
						
							| 4 |  | 2sqcoprm.4 |  |-  ( ph -> ( ( A ^ 2 ) + ( B ^ 2 ) ) = P ) | 
						
							| 5 | 1 2 3 4 | 2sqn0 |  |-  ( ph -> A =/= 0 ) | 
						
							| 6 | 2 3 | gcdcld |  |-  ( ph -> ( A gcd B ) e. NN0 ) | 
						
							| 7 | 6 | adantr |  |-  ( ( ph /\ A =/= 0 ) -> ( A gcd B ) e. NN0 ) | 
						
							| 8 | 2 | adantr |  |-  ( ( ph /\ A =/= 0 ) -> A e. ZZ ) | 
						
							| 9 | 3 | adantr |  |-  ( ( ph /\ A =/= 0 ) -> B e. ZZ ) | 
						
							| 10 |  | simpr |  |-  ( ( ph /\ A =/= 0 ) -> A =/= 0 ) | 
						
							| 11 | 10 | neneqd |  |-  ( ( ph /\ A =/= 0 ) -> -. A = 0 ) | 
						
							| 12 | 11 | intnanrd |  |-  ( ( ph /\ A =/= 0 ) -> -. ( A = 0 /\ B = 0 ) ) | 
						
							| 13 |  | gcdn0cl |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ -. ( A = 0 /\ B = 0 ) ) -> ( A gcd B ) e. NN ) | 
						
							| 14 | 8 9 12 13 | syl21anc |  |-  ( ( ph /\ A =/= 0 ) -> ( A gcd B ) e. NN ) | 
						
							| 15 | 14 | nnsqcld |  |-  ( ( ph /\ A =/= 0 ) -> ( ( A gcd B ) ^ 2 ) e. NN ) | 
						
							| 16 | 6 | nn0zd |  |-  ( ph -> ( A gcd B ) e. ZZ ) | 
						
							| 17 |  | sqnprm |  |-  ( ( A gcd B ) e. ZZ -> -. ( ( A gcd B ) ^ 2 ) e. Prime ) | 
						
							| 18 | 16 17 | syl |  |-  ( ph -> -. ( ( A gcd B ) ^ 2 ) e. Prime ) | 
						
							| 19 |  | zsqcl |  |-  ( ( A gcd B ) e. ZZ -> ( ( A gcd B ) ^ 2 ) e. ZZ ) | 
						
							| 20 | 16 19 | syl |  |-  ( ph -> ( ( A gcd B ) ^ 2 ) e. ZZ ) | 
						
							| 21 |  | zsqcl |  |-  ( A e. ZZ -> ( A ^ 2 ) e. ZZ ) | 
						
							| 22 | 2 21 | syl |  |-  ( ph -> ( A ^ 2 ) e. ZZ ) | 
						
							| 23 |  | zsqcl |  |-  ( B e. ZZ -> ( B ^ 2 ) e. ZZ ) | 
						
							| 24 | 3 23 | syl |  |-  ( ph -> ( B ^ 2 ) e. ZZ ) | 
						
							| 25 |  | gcddvds |  |-  ( ( A e. ZZ /\ B e. ZZ ) -> ( ( A gcd B ) || A /\ ( A gcd B ) || B ) ) | 
						
							| 26 | 2 3 25 | syl2anc |  |-  ( ph -> ( ( A gcd B ) || A /\ ( A gcd B ) || B ) ) | 
						
							| 27 | 26 | simpld |  |-  ( ph -> ( A gcd B ) || A ) | 
						
							| 28 |  | dvdssqim |  |-  ( ( ( A gcd B ) e. ZZ /\ A e. ZZ ) -> ( ( A gcd B ) || A -> ( ( A gcd B ) ^ 2 ) || ( A ^ 2 ) ) ) | 
						
							| 29 | 28 | imp |  |-  ( ( ( ( A gcd B ) e. ZZ /\ A e. ZZ ) /\ ( A gcd B ) || A ) -> ( ( A gcd B ) ^ 2 ) || ( A ^ 2 ) ) | 
						
							| 30 | 16 2 27 29 | syl21anc |  |-  ( ph -> ( ( A gcd B ) ^ 2 ) || ( A ^ 2 ) ) | 
						
							| 31 | 26 | simprd |  |-  ( ph -> ( A gcd B ) || B ) | 
						
							| 32 |  | dvdssqim |  |-  ( ( ( A gcd B ) e. ZZ /\ B e. ZZ ) -> ( ( A gcd B ) || B -> ( ( A gcd B ) ^ 2 ) || ( B ^ 2 ) ) ) | 
						
							| 33 | 32 | imp |  |-  ( ( ( ( A gcd B ) e. ZZ /\ B e. ZZ ) /\ ( A gcd B ) || B ) -> ( ( A gcd B ) ^ 2 ) || ( B ^ 2 ) ) | 
						
							| 34 | 16 3 31 33 | syl21anc |  |-  ( ph -> ( ( A gcd B ) ^ 2 ) || ( B ^ 2 ) ) | 
						
							| 35 | 20 22 24 30 34 | dvds2addd |  |-  ( ph -> ( ( A gcd B ) ^ 2 ) || ( ( A ^ 2 ) + ( B ^ 2 ) ) ) | 
						
							| 36 | 35 4 | breqtrd |  |-  ( ph -> ( ( A gcd B ) ^ 2 ) || P ) | 
						
							| 37 | 36 | adantr |  |-  ( ( ph /\ ( ( A gcd B ) ^ 2 ) e. ( ZZ>= ` 2 ) ) -> ( ( A gcd B ) ^ 2 ) || P ) | 
						
							| 38 |  | simpr |  |-  ( ( ph /\ ( ( A gcd B ) ^ 2 ) e. ( ZZ>= ` 2 ) ) -> ( ( A gcd B ) ^ 2 ) e. ( ZZ>= ` 2 ) ) | 
						
							| 39 | 1 | adantr |  |-  ( ( ph /\ ( ( A gcd B ) ^ 2 ) e. ( ZZ>= ` 2 ) ) -> P e. Prime ) | 
						
							| 40 |  | dvdsprm |  |-  ( ( ( ( A gcd B ) ^ 2 ) e. ( ZZ>= ` 2 ) /\ P e. Prime ) -> ( ( ( A gcd B ) ^ 2 ) || P <-> ( ( A gcd B ) ^ 2 ) = P ) ) | 
						
							| 41 | 38 39 40 | syl2anc |  |-  ( ( ph /\ ( ( A gcd B ) ^ 2 ) e. ( ZZ>= ` 2 ) ) -> ( ( ( A gcd B ) ^ 2 ) || P <-> ( ( A gcd B ) ^ 2 ) = P ) ) | 
						
							| 42 | 37 41 | mpbid |  |-  ( ( ph /\ ( ( A gcd B ) ^ 2 ) e. ( ZZ>= ` 2 ) ) -> ( ( A gcd B ) ^ 2 ) = P ) | 
						
							| 43 | 42 39 | eqeltrd |  |-  ( ( ph /\ ( ( A gcd B ) ^ 2 ) e. ( ZZ>= ` 2 ) ) -> ( ( A gcd B ) ^ 2 ) e. Prime ) | 
						
							| 44 | 18 43 | mtand |  |-  ( ph -> -. ( ( A gcd B ) ^ 2 ) e. ( ZZ>= ` 2 ) ) | 
						
							| 45 |  | eluz2b3 |  |-  ( ( ( A gcd B ) ^ 2 ) e. ( ZZ>= ` 2 ) <-> ( ( ( A gcd B ) ^ 2 ) e. NN /\ ( ( A gcd B ) ^ 2 ) =/= 1 ) ) | 
						
							| 46 | 44 45 | sylnib |  |-  ( ph -> -. ( ( ( A gcd B ) ^ 2 ) e. NN /\ ( ( A gcd B ) ^ 2 ) =/= 1 ) ) | 
						
							| 47 |  | imnan |  |-  ( ( ( ( A gcd B ) ^ 2 ) e. NN -> -. ( ( A gcd B ) ^ 2 ) =/= 1 ) <-> -. ( ( ( A gcd B ) ^ 2 ) e. NN /\ ( ( A gcd B ) ^ 2 ) =/= 1 ) ) | 
						
							| 48 | 46 47 | sylibr |  |-  ( ph -> ( ( ( A gcd B ) ^ 2 ) e. NN -> -. ( ( A gcd B ) ^ 2 ) =/= 1 ) ) | 
						
							| 49 | 48 | adantr |  |-  ( ( ph /\ A =/= 0 ) -> ( ( ( A gcd B ) ^ 2 ) e. NN -> -. ( ( A gcd B ) ^ 2 ) =/= 1 ) ) | 
						
							| 50 | 15 49 | mpd |  |-  ( ( ph /\ A =/= 0 ) -> -. ( ( A gcd B ) ^ 2 ) =/= 1 ) | 
						
							| 51 |  | df-ne |  |-  ( ( ( A gcd B ) ^ 2 ) =/= 1 <-> -. ( ( A gcd B ) ^ 2 ) = 1 ) | 
						
							| 52 | 50 51 | sylnib |  |-  ( ( ph /\ A =/= 0 ) -> -. -. ( ( A gcd B ) ^ 2 ) = 1 ) | 
						
							| 53 | 52 | notnotrd |  |-  ( ( ph /\ A =/= 0 ) -> ( ( A gcd B ) ^ 2 ) = 1 ) | 
						
							| 54 |  | nn0sqeq1 |  |-  ( ( ( A gcd B ) e. NN0 /\ ( ( A gcd B ) ^ 2 ) = 1 ) -> ( A gcd B ) = 1 ) | 
						
							| 55 | 7 53 54 | syl2anc |  |-  ( ( ph /\ A =/= 0 ) -> ( A gcd B ) = 1 ) | 
						
							| 56 | 5 55 | mpdan |  |-  ( ph -> ( A gcd B ) = 1 ) |