| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2sq.1 |  |-  S = ran ( w e. Z[i] |-> ( ( abs ` w ) ^ 2 ) ) | 
						
							| 2 | 1 | eleq2i |  |-  ( A e. S <-> A e. ran ( w e. Z[i] |-> ( ( abs ` w ) ^ 2 ) ) ) | 
						
							| 3 |  | fveq2 |  |-  ( w = x -> ( abs ` w ) = ( abs ` x ) ) | 
						
							| 4 | 3 | oveq1d |  |-  ( w = x -> ( ( abs ` w ) ^ 2 ) = ( ( abs ` x ) ^ 2 ) ) | 
						
							| 5 | 4 | cbvmptv |  |-  ( w e. Z[i] |-> ( ( abs ` w ) ^ 2 ) ) = ( x e. Z[i] |-> ( ( abs ` x ) ^ 2 ) ) | 
						
							| 6 |  | ovex |  |-  ( ( abs ` x ) ^ 2 ) e. _V | 
						
							| 7 | 5 6 | elrnmpti |  |-  ( A e. ran ( w e. Z[i] |-> ( ( abs ` w ) ^ 2 ) ) <-> E. x e. Z[i] A = ( ( abs ` x ) ^ 2 ) ) | 
						
							| 8 | 2 7 | bitri |  |-  ( A e. S <-> E. x e. Z[i] A = ( ( abs ` x ) ^ 2 ) ) |