Step |
Hyp |
Ref |
Expression |
1 |
|
2sq.1 |
|- S = ran ( w e. Z[i] |-> ( ( abs ` w ) ^ 2 ) ) |
2 |
|
2sqlem7.2 |
|- Y = { z | E. x e. ZZ E. y e. ZZ ( ( x gcd y ) = 1 /\ z = ( ( x ^ 2 ) + ( y ^ 2 ) ) ) } |
3 |
|
simpr |
|- ( ( P e. Prime /\ ( P mod 4 ) = 1 ) -> ( P mod 4 ) = 1 ) |
4 |
|
simpl |
|- ( ( P e. Prime /\ ( P mod 4 ) = 1 ) -> P e. Prime ) |
5 |
|
1ne2 |
|- 1 =/= 2 |
6 |
5
|
necomi |
|- 2 =/= 1 |
7 |
|
oveq1 |
|- ( P = 2 -> ( P mod 4 ) = ( 2 mod 4 ) ) |
8 |
|
2re |
|- 2 e. RR |
9 |
|
4re |
|- 4 e. RR |
10 |
|
4pos |
|- 0 < 4 |
11 |
9 10
|
elrpii |
|- 4 e. RR+ |
12 |
|
0le2 |
|- 0 <_ 2 |
13 |
|
2lt4 |
|- 2 < 4 |
14 |
|
modid |
|- ( ( ( 2 e. RR /\ 4 e. RR+ ) /\ ( 0 <_ 2 /\ 2 < 4 ) ) -> ( 2 mod 4 ) = 2 ) |
15 |
8 11 12 13 14
|
mp4an |
|- ( 2 mod 4 ) = 2 |
16 |
7 15
|
eqtrdi |
|- ( P = 2 -> ( P mod 4 ) = 2 ) |
17 |
16
|
neeq1d |
|- ( P = 2 -> ( ( P mod 4 ) =/= 1 <-> 2 =/= 1 ) ) |
18 |
6 17
|
mpbiri |
|- ( P = 2 -> ( P mod 4 ) =/= 1 ) |
19 |
18
|
necon2i |
|- ( ( P mod 4 ) = 1 -> P =/= 2 ) |
20 |
3 19
|
syl |
|- ( ( P e. Prime /\ ( P mod 4 ) = 1 ) -> P =/= 2 ) |
21 |
|
eldifsn |
|- ( P e. ( Prime \ { 2 } ) <-> ( P e. Prime /\ P =/= 2 ) ) |
22 |
4 20 21
|
sylanbrc |
|- ( ( P e. Prime /\ ( P mod 4 ) = 1 ) -> P e. ( Prime \ { 2 } ) ) |
23 |
|
m1lgs |
|- ( P e. ( Prime \ { 2 } ) -> ( ( -u 1 /L P ) = 1 <-> ( P mod 4 ) = 1 ) ) |
24 |
22 23
|
syl |
|- ( ( P e. Prime /\ ( P mod 4 ) = 1 ) -> ( ( -u 1 /L P ) = 1 <-> ( P mod 4 ) = 1 ) ) |
25 |
3 24
|
mpbird |
|- ( ( P e. Prime /\ ( P mod 4 ) = 1 ) -> ( -u 1 /L P ) = 1 ) |
26 |
|
neg1z |
|- -u 1 e. ZZ |
27 |
|
lgsqr |
|- ( ( -u 1 e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( ( -u 1 /L P ) = 1 <-> ( -. P || -u 1 /\ E. n e. ZZ P || ( ( n ^ 2 ) - -u 1 ) ) ) ) |
28 |
26 22 27
|
sylancr |
|- ( ( P e. Prime /\ ( P mod 4 ) = 1 ) -> ( ( -u 1 /L P ) = 1 <-> ( -. P || -u 1 /\ E. n e. ZZ P || ( ( n ^ 2 ) - -u 1 ) ) ) ) |
29 |
25 28
|
mpbid |
|- ( ( P e. Prime /\ ( P mod 4 ) = 1 ) -> ( -. P || -u 1 /\ E. n e. ZZ P || ( ( n ^ 2 ) - -u 1 ) ) ) |
30 |
29
|
simprd |
|- ( ( P e. Prime /\ ( P mod 4 ) = 1 ) -> E. n e. ZZ P || ( ( n ^ 2 ) - -u 1 ) ) |
31 |
|
simprl |
|- ( ( ( P e. Prime /\ ( P mod 4 ) = 1 ) /\ ( n e. ZZ /\ P || ( ( n ^ 2 ) - -u 1 ) ) ) -> n e. ZZ ) |
32 |
|
1zzd |
|- ( ( ( P e. Prime /\ ( P mod 4 ) = 1 ) /\ ( n e. ZZ /\ P || ( ( n ^ 2 ) - -u 1 ) ) ) -> 1 e. ZZ ) |
33 |
|
gcd1 |
|- ( n e. ZZ -> ( n gcd 1 ) = 1 ) |
34 |
33
|
ad2antrl |
|- ( ( ( P e. Prime /\ ( P mod 4 ) = 1 ) /\ ( n e. ZZ /\ P || ( ( n ^ 2 ) - -u 1 ) ) ) -> ( n gcd 1 ) = 1 ) |
35 |
|
eqidd |
|- ( ( ( P e. Prime /\ ( P mod 4 ) = 1 ) /\ ( n e. ZZ /\ P || ( ( n ^ 2 ) - -u 1 ) ) ) -> ( ( n ^ 2 ) + 1 ) = ( ( n ^ 2 ) + 1 ) ) |
36 |
|
oveq1 |
|- ( x = n -> ( x gcd y ) = ( n gcd y ) ) |
37 |
36
|
eqeq1d |
|- ( x = n -> ( ( x gcd y ) = 1 <-> ( n gcd y ) = 1 ) ) |
38 |
|
oveq1 |
|- ( x = n -> ( x ^ 2 ) = ( n ^ 2 ) ) |
39 |
38
|
oveq1d |
|- ( x = n -> ( ( x ^ 2 ) + ( y ^ 2 ) ) = ( ( n ^ 2 ) + ( y ^ 2 ) ) ) |
40 |
39
|
eqeq2d |
|- ( x = n -> ( ( ( n ^ 2 ) + 1 ) = ( ( x ^ 2 ) + ( y ^ 2 ) ) <-> ( ( n ^ 2 ) + 1 ) = ( ( n ^ 2 ) + ( y ^ 2 ) ) ) ) |
41 |
37 40
|
anbi12d |
|- ( x = n -> ( ( ( x gcd y ) = 1 /\ ( ( n ^ 2 ) + 1 ) = ( ( x ^ 2 ) + ( y ^ 2 ) ) ) <-> ( ( n gcd y ) = 1 /\ ( ( n ^ 2 ) + 1 ) = ( ( n ^ 2 ) + ( y ^ 2 ) ) ) ) ) |
42 |
|
oveq2 |
|- ( y = 1 -> ( n gcd y ) = ( n gcd 1 ) ) |
43 |
42
|
eqeq1d |
|- ( y = 1 -> ( ( n gcd y ) = 1 <-> ( n gcd 1 ) = 1 ) ) |
44 |
|
oveq1 |
|- ( y = 1 -> ( y ^ 2 ) = ( 1 ^ 2 ) ) |
45 |
|
sq1 |
|- ( 1 ^ 2 ) = 1 |
46 |
44 45
|
eqtrdi |
|- ( y = 1 -> ( y ^ 2 ) = 1 ) |
47 |
46
|
oveq2d |
|- ( y = 1 -> ( ( n ^ 2 ) + ( y ^ 2 ) ) = ( ( n ^ 2 ) + 1 ) ) |
48 |
47
|
eqeq2d |
|- ( y = 1 -> ( ( ( n ^ 2 ) + 1 ) = ( ( n ^ 2 ) + ( y ^ 2 ) ) <-> ( ( n ^ 2 ) + 1 ) = ( ( n ^ 2 ) + 1 ) ) ) |
49 |
43 48
|
anbi12d |
|- ( y = 1 -> ( ( ( n gcd y ) = 1 /\ ( ( n ^ 2 ) + 1 ) = ( ( n ^ 2 ) + ( y ^ 2 ) ) ) <-> ( ( n gcd 1 ) = 1 /\ ( ( n ^ 2 ) + 1 ) = ( ( n ^ 2 ) + 1 ) ) ) ) |
50 |
41 49
|
rspc2ev |
|- ( ( n e. ZZ /\ 1 e. ZZ /\ ( ( n gcd 1 ) = 1 /\ ( ( n ^ 2 ) + 1 ) = ( ( n ^ 2 ) + 1 ) ) ) -> E. x e. ZZ E. y e. ZZ ( ( x gcd y ) = 1 /\ ( ( n ^ 2 ) + 1 ) = ( ( x ^ 2 ) + ( y ^ 2 ) ) ) ) |
51 |
31 32 34 35 50
|
syl112anc |
|- ( ( ( P e. Prime /\ ( P mod 4 ) = 1 ) /\ ( n e. ZZ /\ P || ( ( n ^ 2 ) - -u 1 ) ) ) -> E. x e. ZZ E. y e. ZZ ( ( x gcd y ) = 1 /\ ( ( n ^ 2 ) + 1 ) = ( ( x ^ 2 ) + ( y ^ 2 ) ) ) ) |
52 |
|
ovex |
|- ( ( n ^ 2 ) + 1 ) e. _V |
53 |
|
eqeq1 |
|- ( z = ( ( n ^ 2 ) + 1 ) -> ( z = ( ( x ^ 2 ) + ( y ^ 2 ) ) <-> ( ( n ^ 2 ) + 1 ) = ( ( x ^ 2 ) + ( y ^ 2 ) ) ) ) |
54 |
53
|
anbi2d |
|- ( z = ( ( n ^ 2 ) + 1 ) -> ( ( ( x gcd y ) = 1 /\ z = ( ( x ^ 2 ) + ( y ^ 2 ) ) ) <-> ( ( x gcd y ) = 1 /\ ( ( n ^ 2 ) + 1 ) = ( ( x ^ 2 ) + ( y ^ 2 ) ) ) ) ) |
55 |
54
|
2rexbidv |
|- ( z = ( ( n ^ 2 ) + 1 ) -> ( E. x e. ZZ E. y e. ZZ ( ( x gcd y ) = 1 /\ z = ( ( x ^ 2 ) + ( y ^ 2 ) ) ) <-> E. x e. ZZ E. y e. ZZ ( ( x gcd y ) = 1 /\ ( ( n ^ 2 ) + 1 ) = ( ( x ^ 2 ) + ( y ^ 2 ) ) ) ) ) |
56 |
52 55 2
|
elab2 |
|- ( ( ( n ^ 2 ) + 1 ) e. Y <-> E. x e. ZZ E. y e. ZZ ( ( x gcd y ) = 1 /\ ( ( n ^ 2 ) + 1 ) = ( ( x ^ 2 ) + ( y ^ 2 ) ) ) ) |
57 |
51 56
|
sylibr |
|- ( ( ( P e. Prime /\ ( P mod 4 ) = 1 ) /\ ( n e. ZZ /\ P || ( ( n ^ 2 ) - -u 1 ) ) ) -> ( ( n ^ 2 ) + 1 ) e. Y ) |
58 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
59 |
58
|
ad2antrr |
|- ( ( ( P e. Prime /\ ( P mod 4 ) = 1 ) /\ ( n e. ZZ /\ P || ( ( n ^ 2 ) - -u 1 ) ) ) -> P e. NN ) |
60 |
|
simprr |
|- ( ( ( P e. Prime /\ ( P mod 4 ) = 1 ) /\ ( n e. ZZ /\ P || ( ( n ^ 2 ) - -u 1 ) ) ) -> P || ( ( n ^ 2 ) - -u 1 ) ) |
61 |
31
|
zcnd |
|- ( ( ( P e. Prime /\ ( P mod 4 ) = 1 ) /\ ( n e. ZZ /\ P || ( ( n ^ 2 ) - -u 1 ) ) ) -> n e. CC ) |
62 |
61
|
sqcld |
|- ( ( ( P e. Prime /\ ( P mod 4 ) = 1 ) /\ ( n e. ZZ /\ P || ( ( n ^ 2 ) - -u 1 ) ) ) -> ( n ^ 2 ) e. CC ) |
63 |
|
ax-1cn |
|- 1 e. CC |
64 |
|
subneg |
|- ( ( ( n ^ 2 ) e. CC /\ 1 e. CC ) -> ( ( n ^ 2 ) - -u 1 ) = ( ( n ^ 2 ) + 1 ) ) |
65 |
62 63 64
|
sylancl |
|- ( ( ( P e. Prime /\ ( P mod 4 ) = 1 ) /\ ( n e. ZZ /\ P || ( ( n ^ 2 ) - -u 1 ) ) ) -> ( ( n ^ 2 ) - -u 1 ) = ( ( n ^ 2 ) + 1 ) ) |
66 |
60 65
|
breqtrd |
|- ( ( ( P e. Prime /\ ( P mod 4 ) = 1 ) /\ ( n e. ZZ /\ P || ( ( n ^ 2 ) - -u 1 ) ) ) -> P || ( ( n ^ 2 ) + 1 ) ) |
67 |
1 2
|
2sqlem10 |
|- ( ( ( ( n ^ 2 ) + 1 ) e. Y /\ P e. NN /\ P || ( ( n ^ 2 ) + 1 ) ) -> P e. S ) |
68 |
57 59 66 67
|
syl3anc |
|- ( ( ( P e. Prime /\ ( P mod 4 ) = 1 ) /\ ( n e. ZZ /\ P || ( ( n ^ 2 ) - -u 1 ) ) ) -> P e. S ) |
69 |
30 68
|
rexlimddv |
|- ( ( P e. Prime /\ ( P mod 4 ) = 1 ) -> P e. S ) |