| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2sq.1 |
|- S = ran ( w e. Z[i] |-> ( ( abs ` w ) ^ 2 ) ) |
| 2 |
|
2sqlem5.1 |
|- ( ph -> N e. NN ) |
| 3 |
|
2sqlem5.2 |
|- ( ph -> P e. Prime ) |
| 4 |
|
2sqlem4.3 |
|- ( ph -> A e. ZZ ) |
| 5 |
|
2sqlem4.4 |
|- ( ph -> B e. ZZ ) |
| 6 |
|
2sqlem4.5 |
|- ( ph -> C e. ZZ ) |
| 7 |
|
2sqlem4.6 |
|- ( ph -> D e. ZZ ) |
| 8 |
|
2sqlem4.7 |
|- ( ph -> ( N x. P ) = ( ( A ^ 2 ) + ( B ^ 2 ) ) ) |
| 9 |
|
2sqlem4.8 |
|- ( ph -> P = ( ( C ^ 2 ) + ( D ^ 2 ) ) ) |
| 10 |
|
2sqlem4.9 |
|- ( ph -> P || ( ( C x. B ) + ( A x. D ) ) ) |
| 11 |
|
gzreim |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( A + ( _i x. B ) ) e. Z[i] ) |
| 12 |
4 5 11
|
syl2anc |
|- ( ph -> ( A + ( _i x. B ) ) e. Z[i] ) |
| 13 |
|
gzreim |
|- ( ( C e. ZZ /\ D e. ZZ ) -> ( C + ( _i x. D ) ) e. Z[i] ) |
| 14 |
6 7 13
|
syl2anc |
|- ( ph -> ( C + ( _i x. D ) ) e. Z[i] ) |
| 15 |
|
gzmulcl |
|- ( ( ( A + ( _i x. B ) ) e. Z[i] /\ ( C + ( _i x. D ) ) e. Z[i] ) -> ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) e. Z[i] ) |
| 16 |
12 14 15
|
syl2anc |
|- ( ph -> ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) e. Z[i] ) |
| 17 |
|
gzcn |
|- ( ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) e. Z[i] -> ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) e. CC ) |
| 18 |
16 17
|
syl |
|- ( ph -> ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) e. CC ) |
| 19 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
| 20 |
3 19
|
syl |
|- ( ph -> P e. NN ) |
| 21 |
20
|
nncnd |
|- ( ph -> P e. CC ) |
| 22 |
20
|
nnne0d |
|- ( ph -> P =/= 0 ) |
| 23 |
18 21 22
|
divcld |
|- ( ph -> ( ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) / P ) e. CC ) |
| 24 |
20
|
nnred |
|- ( ph -> P e. RR ) |
| 25 |
24 18 22
|
redivd |
|- ( ph -> ( Re ` ( ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) / P ) ) = ( ( Re ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) / P ) ) |
| 26 |
|
prmz |
|- ( P e. Prime -> P e. ZZ ) |
| 27 |
3 26
|
syl |
|- ( ph -> P e. ZZ ) |
| 28 |
|
zsqcl |
|- ( P e. ZZ -> ( P ^ 2 ) e. ZZ ) |
| 29 |
27 28
|
syl |
|- ( ph -> ( P ^ 2 ) e. ZZ ) |
| 30 |
2
|
nnzd |
|- ( ph -> N e. ZZ ) |
| 31 |
30 29
|
zmulcld |
|- ( ph -> ( N x. ( P ^ 2 ) ) e. ZZ ) |
| 32 |
|
dvdsmul2 |
|- ( ( P e. ZZ /\ P e. ZZ ) -> P || ( P x. P ) ) |
| 33 |
27 27 32
|
syl2anc |
|- ( ph -> P || ( P x. P ) ) |
| 34 |
21
|
sqvald |
|- ( ph -> ( P ^ 2 ) = ( P x. P ) ) |
| 35 |
33 34
|
breqtrrd |
|- ( ph -> P || ( P ^ 2 ) ) |
| 36 |
|
dvdsmul2 |
|- ( ( N e. ZZ /\ ( P ^ 2 ) e. ZZ ) -> ( P ^ 2 ) || ( N x. ( P ^ 2 ) ) ) |
| 37 |
30 29 36
|
syl2anc |
|- ( ph -> ( P ^ 2 ) || ( N x. ( P ^ 2 ) ) ) |
| 38 |
27 29 31 35 37
|
dvdstrd |
|- ( ph -> P || ( N x. ( P ^ 2 ) ) ) |
| 39 |
|
gzcn |
|- ( ( A + ( _i x. B ) ) e. Z[i] -> ( A + ( _i x. B ) ) e. CC ) |
| 40 |
12 39
|
syl |
|- ( ph -> ( A + ( _i x. B ) ) e. CC ) |
| 41 |
40
|
abscld |
|- ( ph -> ( abs ` ( A + ( _i x. B ) ) ) e. RR ) |
| 42 |
41
|
recnd |
|- ( ph -> ( abs ` ( A + ( _i x. B ) ) ) e. CC ) |
| 43 |
|
gzcn |
|- ( ( C + ( _i x. D ) ) e. Z[i] -> ( C + ( _i x. D ) ) e. CC ) |
| 44 |
14 43
|
syl |
|- ( ph -> ( C + ( _i x. D ) ) e. CC ) |
| 45 |
44
|
abscld |
|- ( ph -> ( abs ` ( C + ( _i x. D ) ) ) e. RR ) |
| 46 |
45
|
recnd |
|- ( ph -> ( abs ` ( C + ( _i x. D ) ) ) e. CC ) |
| 47 |
42 46
|
sqmuld |
|- ( ph -> ( ( ( abs ` ( A + ( _i x. B ) ) ) x. ( abs ` ( C + ( _i x. D ) ) ) ) ^ 2 ) = ( ( ( abs ` ( A + ( _i x. B ) ) ) ^ 2 ) x. ( ( abs ` ( C + ( _i x. D ) ) ) ^ 2 ) ) ) |
| 48 |
4
|
zred |
|- ( ph -> A e. RR ) |
| 49 |
5
|
zred |
|- ( ph -> B e. RR ) |
| 50 |
48 49
|
crred |
|- ( ph -> ( Re ` ( A + ( _i x. B ) ) ) = A ) |
| 51 |
50
|
oveq1d |
|- ( ph -> ( ( Re ` ( A + ( _i x. B ) ) ) ^ 2 ) = ( A ^ 2 ) ) |
| 52 |
48 49
|
crimd |
|- ( ph -> ( Im ` ( A + ( _i x. B ) ) ) = B ) |
| 53 |
52
|
oveq1d |
|- ( ph -> ( ( Im ` ( A + ( _i x. B ) ) ) ^ 2 ) = ( B ^ 2 ) ) |
| 54 |
51 53
|
oveq12d |
|- ( ph -> ( ( ( Re ` ( A + ( _i x. B ) ) ) ^ 2 ) + ( ( Im ` ( A + ( _i x. B ) ) ) ^ 2 ) ) = ( ( A ^ 2 ) + ( B ^ 2 ) ) ) |
| 55 |
40
|
absvalsq2d |
|- ( ph -> ( ( abs ` ( A + ( _i x. B ) ) ) ^ 2 ) = ( ( ( Re ` ( A + ( _i x. B ) ) ) ^ 2 ) + ( ( Im ` ( A + ( _i x. B ) ) ) ^ 2 ) ) ) |
| 56 |
54 55 8
|
3eqtr4d |
|- ( ph -> ( ( abs ` ( A + ( _i x. B ) ) ) ^ 2 ) = ( N x. P ) ) |
| 57 |
6
|
zred |
|- ( ph -> C e. RR ) |
| 58 |
7
|
zred |
|- ( ph -> D e. RR ) |
| 59 |
57 58
|
crred |
|- ( ph -> ( Re ` ( C + ( _i x. D ) ) ) = C ) |
| 60 |
59
|
oveq1d |
|- ( ph -> ( ( Re ` ( C + ( _i x. D ) ) ) ^ 2 ) = ( C ^ 2 ) ) |
| 61 |
57 58
|
crimd |
|- ( ph -> ( Im ` ( C + ( _i x. D ) ) ) = D ) |
| 62 |
61
|
oveq1d |
|- ( ph -> ( ( Im ` ( C + ( _i x. D ) ) ) ^ 2 ) = ( D ^ 2 ) ) |
| 63 |
60 62
|
oveq12d |
|- ( ph -> ( ( ( Re ` ( C + ( _i x. D ) ) ) ^ 2 ) + ( ( Im ` ( C + ( _i x. D ) ) ) ^ 2 ) ) = ( ( C ^ 2 ) + ( D ^ 2 ) ) ) |
| 64 |
44
|
absvalsq2d |
|- ( ph -> ( ( abs ` ( C + ( _i x. D ) ) ) ^ 2 ) = ( ( ( Re ` ( C + ( _i x. D ) ) ) ^ 2 ) + ( ( Im ` ( C + ( _i x. D ) ) ) ^ 2 ) ) ) |
| 65 |
63 64 9
|
3eqtr4d |
|- ( ph -> ( ( abs ` ( C + ( _i x. D ) ) ) ^ 2 ) = P ) |
| 66 |
56 65
|
oveq12d |
|- ( ph -> ( ( ( abs ` ( A + ( _i x. B ) ) ) ^ 2 ) x. ( ( abs ` ( C + ( _i x. D ) ) ) ^ 2 ) ) = ( ( N x. P ) x. P ) ) |
| 67 |
2
|
nncnd |
|- ( ph -> N e. CC ) |
| 68 |
67 21 21
|
mulassd |
|- ( ph -> ( ( N x. P ) x. P ) = ( N x. ( P x. P ) ) ) |
| 69 |
47 66 68
|
3eqtrd |
|- ( ph -> ( ( ( abs ` ( A + ( _i x. B ) ) ) x. ( abs ` ( C + ( _i x. D ) ) ) ) ^ 2 ) = ( N x. ( P x. P ) ) ) |
| 70 |
40 44
|
absmuld |
|- ( ph -> ( abs ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) = ( ( abs ` ( A + ( _i x. B ) ) ) x. ( abs ` ( C + ( _i x. D ) ) ) ) ) |
| 71 |
70
|
oveq1d |
|- ( ph -> ( ( abs ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ^ 2 ) = ( ( ( abs ` ( A + ( _i x. B ) ) ) x. ( abs ` ( C + ( _i x. D ) ) ) ) ^ 2 ) ) |
| 72 |
34
|
oveq2d |
|- ( ph -> ( N x. ( P ^ 2 ) ) = ( N x. ( P x. P ) ) ) |
| 73 |
69 71 72
|
3eqtr4d |
|- ( ph -> ( ( abs ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ^ 2 ) = ( N x. ( P ^ 2 ) ) ) |
| 74 |
38 73
|
breqtrrd |
|- ( ph -> P || ( ( abs ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ^ 2 ) ) |
| 75 |
18
|
absvalsq2d |
|- ( ph -> ( ( abs ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ^ 2 ) = ( ( ( Re ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ^ 2 ) + ( ( Im ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ^ 2 ) ) ) |
| 76 |
|
elgz |
|- ( ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) e. Z[i] <-> ( ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) e. CC /\ ( Re ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) e. ZZ /\ ( Im ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) e. ZZ ) ) |
| 77 |
76
|
simp2bi |
|- ( ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) e. Z[i] -> ( Re ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) e. ZZ ) |
| 78 |
16 77
|
syl |
|- ( ph -> ( Re ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) e. ZZ ) |
| 79 |
|
zsqcl |
|- ( ( Re ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) e. ZZ -> ( ( Re ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ^ 2 ) e. ZZ ) |
| 80 |
78 79
|
syl |
|- ( ph -> ( ( Re ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ^ 2 ) e. ZZ ) |
| 81 |
80
|
zcnd |
|- ( ph -> ( ( Re ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ^ 2 ) e. CC ) |
| 82 |
76
|
simp3bi |
|- ( ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) e. Z[i] -> ( Im ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) e. ZZ ) |
| 83 |
16 82
|
syl |
|- ( ph -> ( Im ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) e. ZZ ) |
| 84 |
|
zsqcl |
|- ( ( Im ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) e. ZZ -> ( ( Im ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ^ 2 ) e. ZZ ) |
| 85 |
83 84
|
syl |
|- ( ph -> ( ( Im ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ^ 2 ) e. ZZ ) |
| 86 |
85
|
zcnd |
|- ( ph -> ( ( Im ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ^ 2 ) e. CC ) |
| 87 |
81 86
|
addcomd |
|- ( ph -> ( ( ( Re ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ^ 2 ) + ( ( Im ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ^ 2 ) ) = ( ( ( Im ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ^ 2 ) + ( ( Re ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ^ 2 ) ) ) |
| 88 |
75 87
|
eqtrd |
|- ( ph -> ( ( abs ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ^ 2 ) = ( ( ( Im ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ^ 2 ) + ( ( Re ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ^ 2 ) ) ) |
| 89 |
74 88
|
breqtrd |
|- ( ph -> P || ( ( ( Im ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ^ 2 ) + ( ( Re ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ^ 2 ) ) ) |
| 90 |
6
|
zcnd |
|- ( ph -> C e. CC ) |
| 91 |
5
|
zcnd |
|- ( ph -> B e. CC ) |
| 92 |
90 91
|
mulcld |
|- ( ph -> ( C x. B ) e. CC ) |
| 93 |
4
|
zcnd |
|- ( ph -> A e. CC ) |
| 94 |
7
|
zcnd |
|- ( ph -> D e. CC ) |
| 95 |
93 94
|
mulcld |
|- ( ph -> ( A x. D ) e. CC ) |
| 96 |
92 95
|
addcomd |
|- ( ph -> ( ( C x. B ) + ( A x. D ) ) = ( ( A x. D ) + ( C x. B ) ) ) |
| 97 |
90 91
|
mulcomd |
|- ( ph -> ( C x. B ) = ( B x. C ) ) |
| 98 |
97
|
oveq2d |
|- ( ph -> ( ( A x. D ) + ( C x. B ) ) = ( ( A x. D ) + ( B x. C ) ) ) |
| 99 |
96 98
|
eqtrd |
|- ( ph -> ( ( C x. B ) + ( A x. D ) ) = ( ( A x. D ) + ( B x. C ) ) ) |
| 100 |
10 99
|
breqtrd |
|- ( ph -> P || ( ( A x. D ) + ( B x. C ) ) ) |
| 101 |
40 44
|
immuld |
|- ( ph -> ( Im ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) = ( ( ( Re ` ( A + ( _i x. B ) ) ) x. ( Im ` ( C + ( _i x. D ) ) ) ) + ( ( Im ` ( A + ( _i x. B ) ) ) x. ( Re ` ( C + ( _i x. D ) ) ) ) ) ) |
| 102 |
50 61
|
oveq12d |
|- ( ph -> ( ( Re ` ( A + ( _i x. B ) ) ) x. ( Im ` ( C + ( _i x. D ) ) ) ) = ( A x. D ) ) |
| 103 |
52 59
|
oveq12d |
|- ( ph -> ( ( Im ` ( A + ( _i x. B ) ) ) x. ( Re ` ( C + ( _i x. D ) ) ) ) = ( B x. C ) ) |
| 104 |
102 103
|
oveq12d |
|- ( ph -> ( ( ( Re ` ( A + ( _i x. B ) ) ) x. ( Im ` ( C + ( _i x. D ) ) ) ) + ( ( Im ` ( A + ( _i x. B ) ) ) x. ( Re ` ( C + ( _i x. D ) ) ) ) ) = ( ( A x. D ) + ( B x. C ) ) ) |
| 105 |
101 104
|
eqtrd |
|- ( ph -> ( Im ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) = ( ( A x. D ) + ( B x. C ) ) ) |
| 106 |
100 105
|
breqtrrd |
|- ( ph -> P || ( Im ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ) |
| 107 |
|
2nn |
|- 2 e. NN |
| 108 |
107
|
a1i |
|- ( ph -> 2 e. NN ) |
| 109 |
|
prmdvdsexp |
|- ( ( P e. Prime /\ ( Im ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) e. ZZ /\ 2 e. NN ) -> ( P || ( ( Im ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ^ 2 ) <-> P || ( Im ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ) ) |
| 110 |
3 83 108 109
|
syl3anc |
|- ( ph -> ( P || ( ( Im ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ^ 2 ) <-> P || ( Im ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ) ) |
| 111 |
106 110
|
mpbird |
|- ( ph -> P || ( ( Im ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ^ 2 ) ) |
| 112 |
|
dvdsadd2b |
|- ( ( P e. ZZ /\ ( ( Re ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ^ 2 ) e. ZZ /\ ( ( ( Im ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ^ 2 ) e. ZZ /\ P || ( ( Im ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ^ 2 ) ) ) -> ( P || ( ( Re ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ^ 2 ) <-> P || ( ( ( Im ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ^ 2 ) + ( ( Re ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ^ 2 ) ) ) ) |
| 113 |
27 80 85 111 112
|
syl112anc |
|- ( ph -> ( P || ( ( Re ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ^ 2 ) <-> P || ( ( ( Im ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ^ 2 ) + ( ( Re ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ^ 2 ) ) ) ) |
| 114 |
89 113
|
mpbird |
|- ( ph -> P || ( ( Re ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ^ 2 ) ) |
| 115 |
|
prmdvdsexp |
|- ( ( P e. Prime /\ ( Re ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) e. ZZ /\ 2 e. NN ) -> ( P || ( ( Re ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ^ 2 ) <-> P || ( Re ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ) ) |
| 116 |
3 78 108 115
|
syl3anc |
|- ( ph -> ( P || ( ( Re ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ^ 2 ) <-> P || ( Re ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ) ) |
| 117 |
114 116
|
mpbid |
|- ( ph -> P || ( Re ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ) |
| 118 |
|
dvdsval2 |
|- ( ( P e. ZZ /\ P =/= 0 /\ ( Re ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) e. ZZ ) -> ( P || ( Re ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) <-> ( ( Re ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) / P ) e. ZZ ) ) |
| 119 |
27 22 78 118
|
syl3anc |
|- ( ph -> ( P || ( Re ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) <-> ( ( Re ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) / P ) e. ZZ ) ) |
| 120 |
117 119
|
mpbid |
|- ( ph -> ( ( Re ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) / P ) e. ZZ ) |
| 121 |
25 120
|
eqeltrd |
|- ( ph -> ( Re ` ( ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) / P ) ) e. ZZ ) |
| 122 |
24 18 22
|
imdivd |
|- ( ph -> ( Im ` ( ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) / P ) ) = ( ( Im ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) / P ) ) |
| 123 |
|
dvdsval2 |
|- ( ( P e. ZZ /\ P =/= 0 /\ ( Im ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) e. ZZ ) -> ( P || ( Im ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) <-> ( ( Im ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) / P ) e. ZZ ) ) |
| 124 |
27 22 83 123
|
syl3anc |
|- ( ph -> ( P || ( Im ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) <-> ( ( Im ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) / P ) e. ZZ ) ) |
| 125 |
106 124
|
mpbid |
|- ( ph -> ( ( Im ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) / P ) e. ZZ ) |
| 126 |
122 125
|
eqeltrd |
|- ( ph -> ( Im ` ( ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) / P ) ) e. ZZ ) |
| 127 |
|
elgz |
|- ( ( ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) / P ) e. Z[i] <-> ( ( ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) / P ) e. CC /\ ( Re ` ( ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) / P ) ) e. ZZ /\ ( Im ` ( ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) / P ) ) e. ZZ ) ) |
| 128 |
23 121 126 127
|
syl3anbrc |
|- ( ph -> ( ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) / P ) e. Z[i] ) |
| 129 |
18 21 22
|
absdivd |
|- ( ph -> ( abs ` ( ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) / P ) ) = ( ( abs ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) / ( abs ` P ) ) ) |
| 130 |
20
|
nnnn0d |
|- ( ph -> P e. NN0 ) |
| 131 |
130
|
nn0ge0d |
|- ( ph -> 0 <_ P ) |
| 132 |
24 131
|
absidd |
|- ( ph -> ( abs ` P ) = P ) |
| 133 |
132
|
oveq2d |
|- ( ph -> ( ( abs ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) / ( abs ` P ) ) = ( ( abs ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) / P ) ) |
| 134 |
129 133
|
eqtrd |
|- ( ph -> ( abs ` ( ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) / P ) ) = ( ( abs ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) / P ) ) |
| 135 |
134
|
oveq1d |
|- ( ph -> ( ( abs ` ( ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) / P ) ) ^ 2 ) = ( ( ( abs ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) / P ) ^ 2 ) ) |
| 136 |
18
|
abscld |
|- ( ph -> ( abs ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) e. RR ) |
| 137 |
136
|
recnd |
|- ( ph -> ( abs ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) e. CC ) |
| 138 |
137 21 22
|
sqdivd |
|- ( ph -> ( ( ( abs ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) / P ) ^ 2 ) = ( ( ( abs ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ^ 2 ) / ( P ^ 2 ) ) ) |
| 139 |
73
|
oveq1d |
|- ( ph -> ( ( ( abs ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ^ 2 ) / ( P ^ 2 ) ) = ( ( N x. ( P ^ 2 ) ) / ( P ^ 2 ) ) ) |
| 140 |
20
|
nnsqcld |
|- ( ph -> ( P ^ 2 ) e. NN ) |
| 141 |
140
|
nncnd |
|- ( ph -> ( P ^ 2 ) e. CC ) |
| 142 |
140
|
nnne0d |
|- ( ph -> ( P ^ 2 ) =/= 0 ) |
| 143 |
67 141 142
|
divcan4d |
|- ( ph -> ( ( N x. ( P ^ 2 ) ) / ( P ^ 2 ) ) = N ) |
| 144 |
139 143
|
eqtrd |
|- ( ph -> ( ( ( abs ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ^ 2 ) / ( P ^ 2 ) ) = N ) |
| 145 |
135 138 144
|
3eqtrrd |
|- ( ph -> N = ( ( abs ` ( ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) / P ) ) ^ 2 ) ) |
| 146 |
|
fveq2 |
|- ( x = ( ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) / P ) -> ( abs ` x ) = ( abs ` ( ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) / P ) ) ) |
| 147 |
146
|
oveq1d |
|- ( x = ( ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) / P ) -> ( ( abs ` x ) ^ 2 ) = ( ( abs ` ( ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) / P ) ) ^ 2 ) ) |
| 148 |
147
|
rspceeqv |
|- ( ( ( ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) / P ) e. Z[i] /\ N = ( ( abs ` ( ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) / P ) ) ^ 2 ) ) -> E. x e. Z[i] N = ( ( abs ` x ) ^ 2 ) ) |
| 149 |
128 145 148
|
syl2anc |
|- ( ph -> E. x e. Z[i] N = ( ( abs ` x ) ^ 2 ) ) |
| 150 |
1
|
2sqlem1 |
|- ( N e. S <-> E. x e. Z[i] N = ( ( abs ` x ) ^ 2 ) ) |
| 151 |
149 150
|
sylibr |
|- ( ph -> N e. S ) |