Step |
Hyp |
Ref |
Expression |
1 |
|
2sq.1 |
|- S = ran ( w e. Z[i] |-> ( ( abs ` w ) ^ 2 ) ) |
2 |
|
2sqlem5.1 |
|- ( ph -> N e. NN ) |
3 |
|
2sqlem5.2 |
|- ( ph -> P e. Prime ) |
4 |
|
2sqlem4.3 |
|- ( ph -> A e. ZZ ) |
5 |
|
2sqlem4.4 |
|- ( ph -> B e. ZZ ) |
6 |
|
2sqlem4.5 |
|- ( ph -> C e. ZZ ) |
7 |
|
2sqlem4.6 |
|- ( ph -> D e. ZZ ) |
8 |
|
2sqlem4.7 |
|- ( ph -> ( N x. P ) = ( ( A ^ 2 ) + ( B ^ 2 ) ) ) |
9 |
|
2sqlem4.8 |
|- ( ph -> P = ( ( C ^ 2 ) + ( D ^ 2 ) ) ) |
10 |
2
|
adantr |
|- ( ( ph /\ P || ( ( C x. B ) + ( A x. D ) ) ) -> N e. NN ) |
11 |
3
|
adantr |
|- ( ( ph /\ P || ( ( C x. B ) + ( A x. D ) ) ) -> P e. Prime ) |
12 |
4
|
adantr |
|- ( ( ph /\ P || ( ( C x. B ) + ( A x. D ) ) ) -> A e. ZZ ) |
13 |
5
|
adantr |
|- ( ( ph /\ P || ( ( C x. B ) + ( A x. D ) ) ) -> B e. ZZ ) |
14 |
6
|
adantr |
|- ( ( ph /\ P || ( ( C x. B ) + ( A x. D ) ) ) -> C e. ZZ ) |
15 |
7
|
adantr |
|- ( ( ph /\ P || ( ( C x. B ) + ( A x. D ) ) ) -> D e. ZZ ) |
16 |
8
|
adantr |
|- ( ( ph /\ P || ( ( C x. B ) + ( A x. D ) ) ) -> ( N x. P ) = ( ( A ^ 2 ) + ( B ^ 2 ) ) ) |
17 |
9
|
adantr |
|- ( ( ph /\ P || ( ( C x. B ) + ( A x. D ) ) ) -> P = ( ( C ^ 2 ) + ( D ^ 2 ) ) ) |
18 |
|
simpr |
|- ( ( ph /\ P || ( ( C x. B ) + ( A x. D ) ) ) -> P || ( ( C x. B ) + ( A x. D ) ) ) |
19 |
1 10 11 12 13 14 15 16 17 18
|
2sqlem3 |
|- ( ( ph /\ P || ( ( C x. B ) + ( A x. D ) ) ) -> N e. S ) |
20 |
2
|
adantr |
|- ( ( ph /\ P || ( ( C x. B ) - ( A x. D ) ) ) -> N e. NN ) |
21 |
3
|
adantr |
|- ( ( ph /\ P || ( ( C x. B ) - ( A x. D ) ) ) -> P e. Prime ) |
22 |
4
|
znegcld |
|- ( ph -> -u A e. ZZ ) |
23 |
22
|
adantr |
|- ( ( ph /\ P || ( ( C x. B ) - ( A x. D ) ) ) -> -u A e. ZZ ) |
24 |
5
|
adantr |
|- ( ( ph /\ P || ( ( C x. B ) - ( A x. D ) ) ) -> B e. ZZ ) |
25 |
6
|
adantr |
|- ( ( ph /\ P || ( ( C x. B ) - ( A x. D ) ) ) -> C e. ZZ ) |
26 |
7
|
adantr |
|- ( ( ph /\ P || ( ( C x. B ) - ( A x. D ) ) ) -> D e. ZZ ) |
27 |
4
|
zcnd |
|- ( ph -> A e. CC ) |
28 |
|
sqneg |
|- ( A e. CC -> ( -u A ^ 2 ) = ( A ^ 2 ) ) |
29 |
27 28
|
syl |
|- ( ph -> ( -u A ^ 2 ) = ( A ^ 2 ) ) |
30 |
29
|
oveq1d |
|- ( ph -> ( ( -u A ^ 2 ) + ( B ^ 2 ) ) = ( ( A ^ 2 ) + ( B ^ 2 ) ) ) |
31 |
8 30
|
eqtr4d |
|- ( ph -> ( N x. P ) = ( ( -u A ^ 2 ) + ( B ^ 2 ) ) ) |
32 |
31
|
adantr |
|- ( ( ph /\ P || ( ( C x. B ) - ( A x. D ) ) ) -> ( N x. P ) = ( ( -u A ^ 2 ) + ( B ^ 2 ) ) ) |
33 |
9
|
adantr |
|- ( ( ph /\ P || ( ( C x. B ) - ( A x. D ) ) ) -> P = ( ( C ^ 2 ) + ( D ^ 2 ) ) ) |
34 |
7
|
zcnd |
|- ( ph -> D e. CC ) |
35 |
27 34
|
mulneg1d |
|- ( ph -> ( -u A x. D ) = -u ( A x. D ) ) |
36 |
35
|
oveq2d |
|- ( ph -> ( ( C x. B ) + ( -u A x. D ) ) = ( ( C x. B ) + -u ( A x. D ) ) ) |
37 |
6 5
|
zmulcld |
|- ( ph -> ( C x. B ) e. ZZ ) |
38 |
37
|
zcnd |
|- ( ph -> ( C x. B ) e. CC ) |
39 |
4 7
|
zmulcld |
|- ( ph -> ( A x. D ) e. ZZ ) |
40 |
39
|
zcnd |
|- ( ph -> ( A x. D ) e. CC ) |
41 |
38 40
|
negsubd |
|- ( ph -> ( ( C x. B ) + -u ( A x. D ) ) = ( ( C x. B ) - ( A x. D ) ) ) |
42 |
36 41
|
eqtrd |
|- ( ph -> ( ( C x. B ) + ( -u A x. D ) ) = ( ( C x. B ) - ( A x. D ) ) ) |
43 |
42
|
breq2d |
|- ( ph -> ( P || ( ( C x. B ) + ( -u A x. D ) ) <-> P || ( ( C x. B ) - ( A x. D ) ) ) ) |
44 |
43
|
biimpar |
|- ( ( ph /\ P || ( ( C x. B ) - ( A x. D ) ) ) -> P || ( ( C x. B ) + ( -u A x. D ) ) ) |
45 |
1 20 21 23 24 25 26 32 33 44
|
2sqlem3 |
|- ( ( ph /\ P || ( ( C x. B ) - ( A x. D ) ) ) -> N e. S ) |
46 |
|
prmz |
|- ( P e. Prime -> P e. ZZ ) |
47 |
3 46
|
syl |
|- ( ph -> P e. ZZ ) |
48 |
|
zsqcl |
|- ( C e. ZZ -> ( C ^ 2 ) e. ZZ ) |
49 |
6 48
|
syl |
|- ( ph -> ( C ^ 2 ) e. ZZ ) |
50 |
2
|
nnzd |
|- ( ph -> N e. ZZ ) |
51 |
49 50
|
zmulcld |
|- ( ph -> ( ( C ^ 2 ) x. N ) e. ZZ ) |
52 |
|
zsqcl |
|- ( A e. ZZ -> ( A ^ 2 ) e. ZZ ) |
53 |
4 52
|
syl |
|- ( ph -> ( A ^ 2 ) e. ZZ ) |
54 |
51 53
|
zsubcld |
|- ( ph -> ( ( ( C ^ 2 ) x. N ) - ( A ^ 2 ) ) e. ZZ ) |
55 |
|
dvdsmul1 |
|- ( ( P e. ZZ /\ ( ( ( C ^ 2 ) x. N ) - ( A ^ 2 ) ) e. ZZ ) -> P || ( P x. ( ( ( C ^ 2 ) x. N ) - ( A ^ 2 ) ) ) ) |
56 |
47 54 55
|
syl2anc |
|- ( ph -> P || ( P x. ( ( ( C ^ 2 ) x. N ) - ( A ^ 2 ) ) ) ) |
57 |
6 4
|
zmulcld |
|- ( ph -> ( C x. A ) e. ZZ ) |
58 |
57
|
zcnd |
|- ( ph -> ( C x. A ) e. CC ) |
59 |
58
|
sqcld |
|- ( ph -> ( ( C x. A ) ^ 2 ) e. CC ) |
60 |
38
|
sqcld |
|- ( ph -> ( ( C x. B ) ^ 2 ) e. CC ) |
61 |
40
|
sqcld |
|- ( ph -> ( ( A x. D ) ^ 2 ) e. CC ) |
62 |
59 60 61
|
pnpcand |
|- ( ph -> ( ( ( ( C x. A ) ^ 2 ) + ( ( C x. B ) ^ 2 ) ) - ( ( ( C x. A ) ^ 2 ) + ( ( A x. D ) ^ 2 ) ) ) = ( ( ( C x. B ) ^ 2 ) - ( ( A x. D ) ^ 2 ) ) ) |
63 |
6
|
zcnd |
|- ( ph -> C e. CC ) |
64 |
63 27
|
sqmuld |
|- ( ph -> ( ( C x. A ) ^ 2 ) = ( ( C ^ 2 ) x. ( A ^ 2 ) ) ) |
65 |
5
|
zcnd |
|- ( ph -> B e. CC ) |
66 |
63 65
|
sqmuld |
|- ( ph -> ( ( C x. B ) ^ 2 ) = ( ( C ^ 2 ) x. ( B ^ 2 ) ) ) |
67 |
64 66
|
oveq12d |
|- ( ph -> ( ( ( C x. A ) ^ 2 ) + ( ( C x. B ) ^ 2 ) ) = ( ( ( C ^ 2 ) x. ( A ^ 2 ) ) + ( ( C ^ 2 ) x. ( B ^ 2 ) ) ) ) |
68 |
63
|
sqcld |
|- ( ph -> ( C ^ 2 ) e. CC ) |
69 |
53
|
zcnd |
|- ( ph -> ( A ^ 2 ) e. CC ) |
70 |
65
|
sqcld |
|- ( ph -> ( B ^ 2 ) e. CC ) |
71 |
68 69 70
|
adddid |
|- ( ph -> ( ( C ^ 2 ) x. ( ( A ^ 2 ) + ( B ^ 2 ) ) ) = ( ( ( C ^ 2 ) x. ( A ^ 2 ) ) + ( ( C ^ 2 ) x. ( B ^ 2 ) ) ) ) |
72 |
67 71
|
eqtr4d |
|- ( ph -> ( ( ( C x. A ) ^ 2 ) + ( ( C x. B ) ^ 2 ) ) = ( ( C ^ 2 ) x. ( ( A ^ 2 ) + ( B ^ 2 ) ) ) ) |
73 |
2
|
nncnd |
|- ( ph -> N e. CC ) |
74 |
47
|
zcnd |
|- ( ph -> P e. CC ) |
75 |
73 74
|
mulcomd |
|- ( ph -> ( N x. P ) = ( P x. N ) ) |
76 |
8 75
|
eqtr3d |
|- ( ph -> ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( P x. N ) ) |
77 |
76
|
oveq2d |
|- ( ph -> ( ( C ^ 2 ) x. ( ( A ^ 2 ) + ( B ^ 2 ) ) ) = ( ( C ^ 2 ) x. ( P x. N ) ) ) |
78 |
68 74 73
|
mul12d |
|- ( ph -> ( ( C ^ 2 ) x. ( P x. N ) ) = ( P x. ( ( C ^ 2 ) x. N ) ) ) |
79 |
77 78
|
eqtrd |
|- ( ph -> ( ( C ^ 2 ) x. ( ( A ^ 2 ) + ( B ^ 2 ) ) ) = ( P x. ( ( C ^ 2 ) x. N ) ) ) |
80 |
72 79
|
eqtrd |
|- ( ph -> ( ( ( C x. A ) ^ 2 ) + ( ( C x. B ) ^ 2 ) ) = ( P x. ( ( C ^ 2 ) x. N ) ) ) |
81 |
27 34
|
sqmuld |
|- ( ph -> ( ( A x. D ) ^ 2 ) = ( ( A ^ 2 ) x. ( D ^ 2 ) ) ) |
82 |
34
|
sqcld |
|- ( ph -> ( D ^ 2 ) e. CC ) |
83 |
69 82
|
mulcomd |
|- ( ph -> ( ( A ^ 2 ) x. ( D ^ 2 ) ) = ( ( D ^ 2 ) x. ( A ^ 2 ) ) ) |
84 |
81 83
|
eqtrd |
|- ( ph -> ( ( A x. D ) ^ 2 ) = ( ( D ^ 2 ) x. ( A ^ 2 ) ) ) |
85 |
64 84
|
oveq12d |
|- ( ph -> ( ( ( C x. A ) ^ 2 ) + ( ( A x. D ) ^ 2 ) ) = ( ( ( C ^ 2 ) x. ( A ^ 2 ) ) + ( ( D ^ 2 ) x. ( A ^ 2 ) ) ) ) |
86 |
49
|
zcnd |
|- ( ph -> ( C ^ 2 ) e. CC ) |
87 |
86 82 69
|
adddird |
|- ( ph -> ( ( ( C ^ 2 ) + ( D ^ 2 ) ) x. ( A ^ 2 ) ) = ( ( ( C ^ 2 ) x. ( A ^ 2 ) ) + ( ( D ^ 2 ) x. ( A ^ 2 ) ) ) ) |
88 |
85 87
|
eqtr4d |
|- ( ph -> ( ( ( C x. A ) ^ 2 ) + ( ( A x. D ) ^ 2 ) ) = ( ( ( C ^ 2 ) + ( D ^ 2 ) ) x. ( A ^ 2 ) ) ) |
89 |
9
|
oveq1d |
|- ( ph -> ( P x. ( A ^ 2 ) ) = ( ( ( C ^ 2 ) + ( D ^ 2 ) ) x. ( A ^ 2 ) ) ) |
90 |
88 89
|
eqtr4d |
|- ( ph -> ( ( ( C x. A ) ^ 2 ) + ( ( A x. D ) ^ 2 ) ) = ( P x. ( A ^ 2 ) ) ) |
91 |
80 90
|
oveq12d |
|- ( ph -> ( ( ( ( C x. A ) ^ 2 ) + ( ( C x. B ) ^ 2 ) ) - ( ( ( C x. A ) ^ 2 ) + ( ( A x. D ) ^ 2 ) ) ) = ( ( P x. ( ( C ^ 2 ) x. N ) ) - ( P x. ( A ^ 2 ) ) ) ) |
92 |
51
|
zcnd |
|- ( ph -> ( ( C ^ 2 ) x. N ) e. CC ) |
93 |
74 92 69
|
subdid |
|- ( ph -> ( P x. ( ( ( C ^ 2 ) x. N ) - ( A ^ 2 ) ) ) = ( ( P x. ( ( C ^ 2 ) x. N ) ) - ( P x. ( A ^ 2 ) ) ) ) |
94 |
91 93
|
eqtr4d |
|- ( ph -> ( ( ( ( C x. A ) ^ 2 ) + ( ( C x. B ) ^ 2 ) ) - ( ( ( C x. A ) ^ 2 ) + ( ( A x. D ) ^ 2 ) ) ) = ( P x. ( ( ( C ^ 2 ) x. N ) - ( A ^ 2 ) ) ) ) |
95 |
62 94
|
eqtr3d |
|- ( ph -> ( ( ( C x. B ) ^ 2 ) - ( ( A x. D ) ^ 2 ) ) = ( P x. ( ( ( C ^ 2 ) x. N ) - ( A ^ 2 ) ) ) ) |
96 |
|
subsq |
|- ( ( ( C x. B ) e. CC /\ ( A x. D ) e. CC ) -> ( ( ( C x. B ) ^ 2 ) - ( ( A x. D ) ^ 2 ) ) = ( ( ( C x. B ) + ( A x. D ) ) x. ( ( C x. B ) - ( A x. D ) ) ) ) |
97 |
38 40 96
|
syl2anc |
|- ( ph -> ( ( ( C x. B ) ^ 2 ) - ( ( A x. D ) ^ 2 ) ) = ( ( ( C x. B ) + ( A x. D ) ) x. ( ( C x. B ) - ( A x. D ) ) ) ) |
98 |
95 97
|
eqtr3d |
|- ( ph -> ( P x. ( ( ( C ^ 2 ) x. N ) - ( A ^ 2 ) ) ) = ( ( ( C x. B ) + ( A x. D ) ) x. ( ( C x. B ) - ( A x. D ) ) ) ) |
99 |
56 98
|
breqtrd |
|- ( ph -> P || ( ( ( C x. B ) + ( A x. D ) ) x. ( ( C x. B ) - ( A x. D ) ) ) ) |
100 |
37 39
|
zaddcld |
|- ( ph -> ( ( C x. B ) + ( A x. D ) ) e. ZZ ) |
101 |
37 39
|
zsubcld |
|- ( ph -> ( ( C x. B ) - ( A x. D ) ) e. ZZ ) |
102 |
|
euclemma |
|- ( ( P e. Prime /\ ( ( C x. B ) + ( A x. D ) ) e. ZZ /\ ( ( C x. B ) - ( A x. D ) ) e. ZZ ) -> ( P || ( ( ( C x. B ) + ( A x. D ) ) x. ( ( C x. B ) - ( A x. D ) ) ) <-> ( P || ( ( C x. B ) + ( A x. D ) ) \/ P || ( ( C x. B ) - ( A x. D ) ) ) ) ) |
103 |
3 100 101 102
|
syl3anc |
|- ( ph -> ( P || ( ( ( C x. B ) + ( A x. D ) ) x. ( ( C x. B ) - ( A x. D ) ) ) <-> ( P || ( ( C x. B ) + ( A x. D ) ) \/ P || ( ( C x. B ) - ( A x. D ) ) ) ) ) |
104 |
99 103
|
mpbid |
|- ( ph -> ( P || ( ( C x. B ) + ( A x. D ) ) \/ P || ( ( C x. B ) - ( A x. D ) ) ) ) |
105 |
19 45 104
|
mpjaodan |
|- ( ph -> N e. S ) |