| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2sq.1 |
|- S = ran ( w e. Z[i] |-> ( ( abs ` w ) ^ 2 ) ) |
| 2 |
|
2sqlem7.2 |
|- Y = { z | E. x e. ZZ E. y e. ZZ ( ( x gcd y ) = 1 /\ z = ( ( x ^ 2 ) + ( y ^ 2 ) ) ) } |
| 3 |
|
2sqlem9.5 |
|- ( ph -> A. b e. ( 1 ... ( M - 1 ) ) A. a e. Y ( b || a -> b e. S ) ) |
| 4 |
|
2sqlem9.7 |
|- ( ph -> M || N ) |
| 5 |
|
2sqlem8.n |
|- ( ph -> N e. NN ) |
| 6 |
|
2sqlem8.m |
|- ( ph -> M e. ( ZZ>= ` 2 ) ) |
| 7 |
|
2sqlem8.1 |
|- ( ph -> A e. ZZ ) |
| 8 |
|
2sqlem8.2 |
|- ( ph -> B e. ZZ ) |
| 9 |
|
2sqlem8.3 |
|- ( ph -> ( A gcd B ) = 1 ) |
| 10 |
|
2sqlem8.4 |
|- ( ph -> N = ( ( A ^ 2 ) + ( B ^ 2 ) ) ) |
| 11 |
|
2sqlem8.c |
|- C = ( ( ( A + ( M / 2 ) ) mod M ) - ( M / 2 ) ) |
| 12 |
|
2sqlem8.d |
|- D = ( ( ( B + ( M / 2 ) ) mod M ) - ( M / 2 ) ) |
| 13 |
|
2sqlem8.e |
|- E = ( C / ( C gcd D ) ) |
| 14 |
|
2sqlem8.f |
|- F = ( D / ( C gcd D ) ) |
| 15 |
|
eluz2b3 |
|- ( M e. ( ZZ>= ` 2 ) <-> ( M e. NN /\ M =/= 1 ) ) |
| 16 |
6 15
|
sylib |
|- ( ph -> ( M e. NN /\ M =/= 1 ) ) |
| 17 |
16
|
simpld |
|- ( ph -> M e. NN ) |
| 18 |
|
eluzelz |
|- ( M e. ( ZZ>= ` 2 ) -> M e. ZZ ) |
| 19 |
6 18
|
syl |
|- ( ph -> M e. ZZ ) |
| 20 |
5
|
nnzd |
|- ( ph -> N e. ZZ ) |
| 21 |
7 17 11
|
4sqlem5 |
|- ( ph -> ( C e. ZZ /\ ( ( A - C ) / M ) e. ZZ ) ) |
| 22 |
21
|
simpld |
|- ( ph -> C e. ZZ ) |
| 23 |
|
zsqcl |
|- ( C e. ZZ -> ( C ^ 2 ) e. ZZ ) |
| 24 |
22 23
|
syl |
|- ( ph -> ( C ^ 2 ) e. ZZ ) |
| 25 |
8 17 12
|
4sqlem5 |
|- ( ph -> ( D e. ZZ /\ ( ( B - D ) / M ) e. ZZ ) ) |
| 26 |
25
|
simpld |
|- ( ph -> D e. ZZ ) |
| 27 |
|
zsqcl |
|- ( D e. ZZ -> ( D ^ 2 ) e. ZZ ) |
| 28 |
26 27
|
syl |
|- ( ph -> ( D ^ 2 ) e. ZZ ) |
| 29 |
24 28
|
zaddcld |
|- ( ph -> ( ( C ^ 2 ) + ( D ^ 2 ) ) e. ZZ ) |
| 30 |
|
zsqcl |
|- ( A e. ZZ -> ( A ^ 2 ) e. ZZ ) |
| 31 |
7 30
|
syl |
|- ( ph -> ( A ^ 2 ) e. ZZ ) |
| 32 |
31 24
|
zsubcld |
|- ( ph -> ( ( A ^ 2 ) - ( C ^ 2 ) ) e. ZZ ) |
| 33 |
|
zsqcl |
|- ( B e. ZZ -> ( B ^ 2 ) e. ZZ ) |
| 34 |
8 33
|
syl |
|- ( ph -> ( B ^ 2 ) e. ZZ ) |
| 35 |
34 28
|
zsubcld |
|- ( ph -> ( ( B ^ 2 ) - ( D ^ 2 ) ) e. ZZ ) |
| 36 |
7 17 11
|
4sqlem8 |
|- ( ph -> M || ( ( A ^ 2 ) - ( C ^ 2 ) ) ) |
| 37 |
8 17 12
|
4sqlem8 |
|- ( ph -> M || ( ( B ^ 2 ) - ( D ^ 2 ) ) ) |
| 38 |
19 32 35 36 37
|
dvds2addd |
|- ( ph -> M || ( ( ( A ^ 2 ) - ( C ^ 2 ) ) + ( ( B ^ 2 ) - ( D ^ 2 ) ) ) ) |
| 39 |
10
|
oveq1d |
|- ( ph -> ( N - ( ( C ^ 2 ) + ( D ^ 2 ) ) ) = ( ( ( A ^ 2 ) + ( B ^ 2 ) ) - ( ( C ^ 2 ) + ( D ^ 2 ) ) ) ) |
| 40 |
31
|
zcnd |
|- ( ph -> ( A ^ 2 ) e. CC ) |
| 41 |
34
|
zcnd |
|- ( ph -> ( B ^ 2 ) e. CC ) |
| 42 |
24
|
zcnd |
|- ( ph -> ( C ^ 2 ) e. CC ) |
| 43 |
28
|
zcnd |
|- ( ph -> ( D ^ 2 ) e. CC ) |
| 44 |
40 41 42 43
|
addsub4d |
|- ( ph -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) - ( ( C ^ 2 ) + ( D ^ 2 ) ) ) = ( ( ( A ^ 2 ) - ( C ^ 2 ) ) + ( ( B ^ 2 ) - ( D ^ 2 ) ) ) ) |
| 45 |
39 44
|
eqtrd |
|- ( ph -> ( N - ( ( C ^ 2 ) + ( D ^ 2 ) ) ) = ( ( ( A ^ 2 ) - ( C ^ 2 ) ) + ( ( B ^ 2 ) - ( D ^ 2 ) ) ) ) |
| 46 |
38 45
|
breqtrrd |
|- ( ph -> M || ( N - ( ( C ^ 2 ) + ( D ^ 2 ) ) ) ) |
| 47 |
|
dvdssub2 |
|- ( ( ( M e. ZZ /\ N e. ZZ /\ ( ( C ^ 2 ) + ( D ^ 2 ) ) e. ZZ ) /\ M || ( N - ( ( C ^ 2 ) + ( D ^ 2 ) ) ) ) -> ( M || N <-> M || ( ( C ^ 2 ) + ( D ^ 2 ) ) ) ) |
| 48 |
19 20 29 46 47
|
syl31anc |
|- ( ph -> ( M || N <-> M || ( ( C ^ 2 ) + ( D ^ 2 ) ) ) ) |
| 49 |
4 48
|
mpbid |
|- ( ph -> M || ( ( C ^ 2 ) + ( D ^ 2 ) ) ) |
| 50 |
1 2 3 4 5 6 7 8 9 10 11 12
|
2sqlem8a |
|- ( ph -> ( C gcd D ) e. NN ) |
| 51 |
50
|
nnzd |
|- ( ph -> ( C gcd D ) e. ZZ ) |
| 52 |
|
zsqcl2 |
|- ( ( C gcd D ) e. ZZ -> ( ( C gcd D ) ^ 2 ) e. NN0 ) |
| 53 |
51 52
|
syl |
|- ( ph -> ( ( C gcd D ) ^ 2 ) e. NN0 ) |
| 54 |
53
|
nn0cnd |
|- ( ph -> ( ( C gcd D ) ^ 2 ) e. CC ) |
| 55 |
|
gcddvds |
|- ( ( C e. ZZ /\ D e. ZZ ) -> ( ( C gcd D ) || C /\ ( C gcd D ) || D ) ) |
| 56 |
22 26 55
|
syl2anc |
|- ( ph -> ( ( C gcd D ) || C /\ ( C gcd D ) || D ) ) |
| 57 |
56
|
simpld |
|- ( ph -> ( C gcd D ) || C ) |
| 58 |
50
|
nnne0d |
|- ( ph -> ( C gcd D ) =/= 0 ) |
| 59 |
|
dvdsval2 |
|- ( ( ( C gcd D ) e. ZZ /\ ( C gcd D ) =/= 0 /\ C e. ZZ ) -> ( ( C gcd D ) || C <-> ( C / ( C gcd D ) ) e. ZZ ) ) |
| 60 |
51 58 22 59
|
syl3anc |
|- ( ph -> ( ( C gcd D ) || C <-> ( C / ( C gcd D ) ) e. ZZ ) ) |
| 61 |
57 60
|
mpbid |
|- ( ph -> ( C / ( C gcd D ) ) e. ZZ ) |
| 62 |
13 61
|
eqeltrid |
|- ( ph -> E e. ZZ ) |
| 63 |
|
zsqcl2 |
|- ( E e. ZZ -> ( E ^ 2 ) e. NN0 ) |
| 64 |
62 63
|
syl |
|- ( ph -> ( E ^ 2 ) e. NN0 ) |
| 65 |
64
|
nn0cnd |
|- ( ph -> ( E ^ 2 ) e. CC ) |
| 66 |
56
|
simprd |
|- ( ph -> ( C gcd D ) || D ) |
| 67 |
|
dvdsval2 |
|- ( ( ( C gcd D ) e. ZZ /\ ( C gcd D ) =/= 0 /\ D e. ZZ ) -> ( ( C gcd D ) || D <-> ( D / ( C gcd D ) ) e. ZZ ) ) |
| 68 |
51 58 26 67
|
syl3anc |
|- ( ph -> ( ( C gcd D ) || D <-> ( D / ( C gcd D ) ) e. ZZ ) ) |
| 69 |
66 68
|
mpbid |
|- ( ph -> ( D / ( C gcd D ) ) e. ZZ ) |
| 70 |
14 69
|
eqeltrid |
|- ( ph -> F e. ZZ ) |
| 71 |
|
zsqcl2 |
|- ( F e. ZZ -> ( F ^ 2 ) e. NN0 ) |
| 72 |
70 71
|
syl |
|- ( ph -> ( F ^ 2 ) e. NN0 ) |
| 73 |
72
|
nn0cnd |
|- ( ph -> ( F ^ 2 ) e. CC ) |
| 74 |
54 65 73
|
adddid |
|- ( ph -> ( ( ( C gcd D ) ^ 2 ) x. ( ( E ^ 2 ) + ( F ^ 2 ) ) ) = ( ( ( ( C gcd D ) ^ 2 ) x. ( E ^ 2 ) ) + ( ( ( C gcd D ) ^ 2 ) x. ( F ^ 2 ) ) ) ) |
| 75 |
51
|
zcnd |
|- ( ph -> ( C gcd D ) e. CC ) |
| 76 |
62
|
zcnd |
|- ( ph -> E e. CC ) |
| 77 |
75 76
|
sqmuld |
|- ( ph -> ( ( ( C gcd D ) x. E ) ^ 2 ) = ( ( ( C gcd D ) ^ 2 ) x. ( E ^ 2 ) ) ) |
| 78 |
13
|
oveq2i |
|- ( ( C gcd D ) x. E ) = ( ( C gcd D ) x. ( C / ( C gcd D ) ) ) |
| 79 |
22
|
zcnd |
|- ( ph -> C e. CC ) |
| 80 |
79 75 58
|
divcan2d |
|- ( ph -> ( ( C gcd D ) x. ( C / ( C gcd D ) ) ) = C ) |
| 81 |
78 80
|
eqtrid |
|- ( ph -> ( ( C gcd D ) x. E ) = C ) |
| 82 |
81
|
oveq1d |
|- ( ph -> ( ( ( C gcd D ) x. E ) ^ 2 ) = ( C ^ 2 ) ) |
| 83 |
77 82
|
eqtr3d |
|- ( ph -> ( ( ( C gcd D ) ^ 2 ) x. ( E ^ 2 ) ) = ( C ^ 2 ) ) |
| 84 |
70
|
zcnd |
|- ( ph -> F e. CC ) |
| 85 |
75 84
|
sqmuld |
|- ( ph -> ( ( ( C gcd D ) x. F ) ^ 2 ) = ( ( ( C gcd D ) ^ 2 ) x. ( F ^ 2 ) ) ) |
| 86 |
14
|
oveq2i |
|- ( ( C gcd D ) x. F ) = ( ( C gcd D ) x. ( D / ( C gcd D ) ) ) |
| 87 |
26
|
zcnd |
|- ( ph -> D e. CC ) |
| 88 |
87 75 58
|
divcan2d |
|- ( ph -> ( ( C gcd D ) x. ( D / ( C gcd D ) ) ) = D ) |
| 89 |
86 88
|
eqtrid |
|- ( ph -> ( ( C gcd D ) x. F ) = D ) |
| 90 |
89
|
oveq1d |
|- ( ph -> ( ( ( C gcd D ) x. F ) ^ 2 ) = ( D ^ 2 ) ) |
| 91 |
85 90
|
eqtr3d |
|- ( ph -> ( ( ( C gcd D ) ^ 2 ) x. ( F ^ 2 ) ) = ( D ^ 2 ) ) |
| 92 |
83 91
|
oveq12d |
|- ( ph -> ( ( ( ( C gcd D ) ^ 2 ) x. ( E ^ 2 ) ) + ( ( ( C gcd D ) ^ 2 ) x. ( F ^ 2 ) ) ) = ( ( C ^ 2 ) + ( D ^ 2 ) ) ) |
| 93 |
74 92
|
eqtrd |
|- ( ph -> ( ( ( C gcd D ) ^ 2 ) x. ( ( E ^ 2 ) + ( F ^ 2 ) ) ) = ( ( C ^ 2 ) + ( D ^ 2 ) ) ) |
| 94 |
49 93
|
breqtrrd |
|- ( ph -> M || ( ( ( C gcd D ) ^ 2 ) x. ( ( E ^ 2 ) + ( F ^ 2 ) ) ) ) |
| 95 |
|
zsqcl |
|- ( ( C gcd D ) e. ZZ -> ( ( C gcd D ) ^ 2 ) e. ZZ ) |
| 96 |
51 95
|
syl |
|- ( ph -> ( ( C gcd D ) ^ 2 ) e. ZZ ) |
| 97 |
19 96
|
gcdcomd |
|- ( ph -> ( M gcd ( ( C gcd D ) ^ 2 ) ) = ( ( ( C gcd D ) ^ 2 ) gcd M ) ) |
| 98 |
51 19
|
gcdcld |
|- ( ph -> ( ( C gcd D ) gcd M ) e. NN0 ) |
| 99 |
98
|
nn0zd |
|- ( ph -> ( ( C gcd D ) gcd M ) e. ZZ ) |
| 100 |
|
gcddvds |
|- ( ( ( C gcd D ) e. ZZ /\ M e. ZZ ) -> ( ( ( C gcd D ) gcd M ) || ( C gcd D ) /\ ( ( C gcd D ) gcd M ) || M ) ) |
| 101 |
51 19 100
|
syl2anc |
|- ( ph -> ( ( ( C gcd D ) gcd M ) || ( C gcd D ) /\ ( ( C gcd D ) gcd M ) || M ) ) |
| 102 |
101
|
simpld |
|- ( ph -> ( ( C gcd D ) gcd M ) || ( C gcd D ) ) |
| 103 |
99 51 22 102 57
|
dvdstrd |
|- ( ph -> ( ( C gcd D ) gcd M ) || C ) |
| 104 |
7 22
|
zsubcld |
|- ( ph -> ( A - C ) e. ZZ ) |
| 105 |
101
|
simprd |
|- ( ph -> ( ( C gcd D ) gcd M ) || M ) |
| 106 |
21
|
simprd |
|- ( ph -> ( ( A - C ) / M ) e. ZZ ) |
| 107 |
17
|
nnne0d |
|- ( ph -> M =/= 0 ) |
| 108 |
|
dvdsval2 |
|- ( ( M e. ZZ /\ M =/= 0 /\ ( A - C ) e. ZZ ) -> ( M || ( A - C ) <-> ( ( A - C ) / M ) e. ZZ ) ) |
| 109 |
19 107 104 108
|
syl3anc |
|- ( ph -> ( M || ( A - C ) <-> ( ( A - C ) / M ) e. ZZ ) ) |
| 110 |
106 109
|
mpbird |
|- ( ph -> M || ( A - C ) ) |
| 111 |
99 19 104 105 110
|
dvdstrd |
|- ( ph -> ( ( C gcd D ) gcd M ) || ( A - C ) ) |
| 112 |
|
dvdssub2 |
|- ( ( ( ( ( C gcd D ) gcd M ) e. ZZ /\ A e. ZZ /\ C e. ZZ ) /\ ( ( C gcd D ) gcd M ) || ( A - C ) ) -> ( ( ( C gcd D ) gcd M ) || A <-> ( ( C gcd D ) gcd M ) || C ) ) |
| 113 |
99 7 22 111 112
|
syl31anc |
|- ( ph -> ( ( ( C gcd D ) gcd M ) || A <-> ( ( C gcd D ) gcd M ) || C ) ) |
| 114 |
103 113
|
mpbird |
|- ( ph -> ( ( C gcd D ) gcd M ) || A ) |
| 115 |
99 51 26 102 66
|
dvdstrd |
|- ( ph -> ( ( C gcd D ) gcd M ) || D ) |
| 116 |
8 26
|
zsubcld |
|- ( ph -> ( B - D ) e. ZZ ) |
| 117 |
25
|
simprd |
|- ( ph -> ( ( B - D ) / M ) e. ZZ ) |
| 118 |
|
dvdsval2 |
|- ( ( M e. ZZ /\ M =/= 0 /\ ( B - D ) e. ZZ ) -> ( M || ( B - D ) <-> ( ( B - D ) / M ) e. ZZ ) ) |
| 119 |
19 107 116 118
|
syl3anc |
|- ( ph -> ( M || ( B - D ) <-> ( ( B - D ) / M ) e. ZZ ) ) |
| 120 |
117 119
|
mpbird |
|- ( ph -> M || ( B - D ) ) |
| 121 |
99 19 116 105 120
|
dvdstrd |
|- ( ph -> ( ( C gcd D ) gcd M ) || ( B - D ) ) |
| 122 |
|
dvdssub2 |
|- ( ( ( ( ( C gcd D ) gcd M ) e. ZZ /\ B e. ZZ /\ D e. ZZ ) /\ ( ( C gcd D ) gcd M ) || ( B - D ) ) -> ( ( ( C gcd D ) gcd M ) || B <-> ( ( C gcd D ) gcd M ) || D ) ) |
| 123 |
99 8 26 121 122
|
syl31anc |
|- ( ph -> ( ( ( C gcd D ) gcd M ) || B <-> ( ( C gcd D ) gcd M ) || D ) ) |
| 124 |
115 123
|
mpbird |
|- ( ph -> ( ( C gcd D ) gcd M ) || B ) |
| 125 |
|
ax-1ne0 |
|- 1 =/= 0 |
| 126 |
125
|
a1i |
|- ( ph -> 1 =/= 0 ) |
| 127 |
9 126
|
eqnetrd |
|- ( ph -> ( A gcd B ) =/= 0 ) |
| 128 |
127
|
neneqd |
|- ( ph -> -. ( A gcd B ) = 0 ) |
| 129 |
|
gcdeq0 |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( A gcd B ) = 0 <-> ( A = 0 /\ B = 0 ) ) ) |
| 130 |
7 8 129
|
syl2anc |
|- ( ph -> ( ( A gcd B ) = 0 <-> ( A = 0 /\ B = 0 ) ) ) |
| 131 |
128 130
|
mtbid |
|- ( ph -> -. ( A = 0 /\ B = 0 ) ) |
| 132 |
|
dvdslegcd |
|- ( ( ( ( ( C gcd D ) gcd M ) e. ZZ /\ A e. ZZ /\ B e. ZZ ) /\ -. ( A = 0 /\ B = 0 ) ) -> ( ( ( ( C gcd D ) gcd M ) || A /\ ( ( C gcd D ) gcd M ) || B ) -> ( ( C gcd D ) gcd M ) <_ ( A gcd B ) ) ) |
| 133 |
99 7 8 131 132
|
syl31anc |
|- ( ph -> ( ( ( ( C gcd D ) gcd M ) || A /\ ( ( C gcd D ) gcd M ) || B ) -> ( ( C gcd D ) gcd M ) <_ ( A gcd B ) ) ) |
| 134 |
114 124 133
|
mp2and |
|- ( ph -> ( ( C gcd D ) gcd M ) <_ ( A gcd B ) ) |
| 135 |
134 9
|
breqtrd |
|- ( ph -> ( ( C gcd D ) gcd M ) <_ 1 ) |
| 136 |
|
simpr |
|- ( ( ( C gcd D ) = 0 /\ M = 0 ) -> M = 0 ) |
| 137 |
136
|
necon3ai |
|- ( M =/= 0 -> -. ( ( C gcd D ) = 0 /\ M = 0 ) ) |
| 138 |
107 137
|
syl |
|- ( ph -> -. ( ( C gcd D ) = 0 /\ M = 0 ) ) |
| 139 |
|
gcdn0cl |
|- ( ( ( ( C gcd D ) e. ZZ /\ M e. ZZ ) /\ -. ( ( C gcd D ) = 0 /\ M = 0 ) ) -> ( ( C gcd D ) gcd M ) e. NN ) |
| 140 |
51 19 138 139
|
syl21anc |
|- ( ph -> ( ( C gcd D ) gcd M ) e. NN ) |
| 141 |
|
nnle1eq1 |
|- ( ( ( C gcd D ) gcd M ) e. NN -> ( ( ( C gcd D ) gcd M ) <_ 1 <-> ( ( C gcd D ) gcd M ) = 1 ) ) |
| 142 |
140 141
|
syl |
|- ( ph -> ( ( ( C gcd D ) gcd M ) <_ 1 <-> ( ( C gcd D ) gcd M ) = 1 ) ) |
| 143 |
135 142
|
mpbid |
|- ( ph -> ( ( C gcd D ) gcd M ) = 1 ) |
| 144 |
|
2nn |
|- 2 e. NN |
| 145 |
144
|
a1i |
|- ( ph -> 2 e. NN ) |
| 146 |
|
rplpwr |
|- ( ( ( C gcd D ) e. NN /\ M e. NN /\ 2 e. NN ) -> ( ( ( C gcd D ) gcd M ) = 1 -> ( ( ( C gcd D ) ^ 2 ) gcd M ) = 1 ) ) |
| 147 |
50 17 145 146
|
syl3anc |
|- ( ph -> ( ( ( C gcd D ) gcd M ) = 1 -> ( ( ( C gcd D ) ^ 2 ) gcd M ) = 1 ) ) |
| 148 |
143 147
|
mpd |
|- ( ph -> ( ( ( C gcd D ) ^ 2 ) gcd M ) = 1 ) |
| 149 |
97 148
|
eqtrd |
|- ( ph -> ( M gcd ( ( C gcd D ) ^ 2 ) ) = 1 ) |
| 150 |
64 72
|
nn0addcld |
|- ( ph -> ( ( E ^ 2 ) + ( F ^ 2 ) ) e. NN0 ) |
| 151 |
150
|
nn0zd |
|- ( ph -> ( ( E ^ 2 ) + ( F ^ 2 ) ) e. ZZ ) |
| 152 |
|
coprmdvds |
|- ( ( M e. ZZ /\ ( ( C gcd D ) ^ 2 ) e. ZZ /\ ( ( E ^ 2 ) + ( F ^ 2 ) ) e. ZZ ) -> ( ( M || ( ( ( C gcd D ) ^ 2 ) x. ( ( E ^ 2 ) + ( F ^ 2 ) ) ) /\ ( M gcd ( ( C gcd D ) ^ 2 ) ) = 1 ) -> M || ( ( E ^ 2 ) + ( F ^ 2 ) ) ) ) |
| 153 |
19 96 151 152
|
syl3anc |
|- ( ph -> ( ( M || ( ( ( C gcd D ) ^ 2 ) x. ( ( E ^ 2 ) + ( F ^ 2 ) ) ) /\ ( M gcd ( ( C gcd D ) ^ 2 ) ) = 1 ) -> M || ( ( E ^ 2 ) + ( F ^ 2 ) ) ) ) |
| 154 |
94 149 153
|
mp2and |
|- ( ph -> M || ( ( E ^ 2 ) + ( F ^ 2 ) ) ) |
| 155 |
|
dvdsval2 |
|- ( ( M e. ZZ /\ M =/= 0 /\ ( ( E ^ 2 ) + ( F ^ 2 ) ) e. ZZ ) -> ( M || ( ( E ^ 2 ) + ( F ^ 2 ) ) <-> ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) e. ZZ ) ) |
| 156 |
19 107 151 155
|
syl3anc |
|- ( ph -> ( M || ( ( E ^ 2 ) + ( F ^ 2 ) ) <-> ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) e. ZZ ) ) |
| 157 |
154 156
|
mpbid |
|- ( ph -> ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) e. ZZ ) |
| 158 |
64
|
nn0red |
|- ( ph -> ( E ^ 2 ) e. RR ) |
| 159 |
72
|
nn0red |
|- ( ph -> ( F ^ 2 ) e. RR ) |
| 160 |
158 159
|
readdcld |
|- ( ph -> ( ( E ^ 2 ) + ( F ^ 2 ) ) e. RR ) |
| 161 |
17
|
nnred |
|- ( ph -> M e. RR ) |
| 162 |
1 2
|
2sqlem7 |
|- Y C_ ( S i^i NN ) |
| 163 |
|
inss2 |
|- ( S i^i NN ) C_ NN |
| 164 |
162 163
|
sstri |
|- Y C_ NN |
| 165 |
62 70
|
gcdcld |
|- ( ph -> ( E gcd F ) e. NN0 ) |
| 166 |
165
|
nn0cnd |
|- ( ph -> ( E gcd F ) e. CC ) |
| 167 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
| 168 |
75
|
mulridd |
|- ( ph -> ( ( C gcd D ) x. 1 ) = ( C gcd D ) ) |
| 169 |
81 89
|
oveq12d |
|- ( ph -> ( ( ( C gcd D ) x. E ) gcd ( ( C gcd D ) x. F ) ) = ( C gcd D ) ) |
| 170 |
22 26
|
gcdcld |
|- ( ph -> ( C gcd D ) e. NN0 ) |
| 171 |
|
mulgcd |
|- ( ( ( C gcd D ) e. NN0 /\ E e. ZZ /\ F e. ZZ ) -> ( ( ( C gcd D ) x. E ) gcd ( ( C gcd D ) x. F ) ) = ( ( C gcd D ) x. ( E gcd F ) ) ) |
| 172 |
170 62 70 171
|
syl3anc |
|- ( ph -> ( ( ( C gcd D ) x. E ) gcd ( ( C gcd D ) x. F ) ) = ( ( C gcd D ) x. ( E gcd F ) ) ) |
| 173 |
168 169 172
|
3eqtr2rd |
|- ( ph -> ( ( C gcd D ) x. ( E gcd F ) ) = ( ( C gcd D ) x. 1 ) ) |
| 174 |
166 167 75 58 173
|
mulcanad |
|- ( ph -> ( E gcd F ) = 1 ) |
| 175 |
|
eqidd |
|- ( ph -> ( ( E ^ 2 ) + ( F ^ 2 ) ) = ( ( E ^ 2 ) + ( F ^ 2 ) ) ) |
| 176 |
|
oveq1 |
|- ( x = E -> ( x gcd y ) = ( E gcd y ) ) |
| 177 |
176
|
eqeq1d |
|- ( x = E -> ( ( x gcd y ) = 1 <-> ( E gcd y ) = 1 ) ) |
| 178 |
|
oveq1 |
|- ( x = E -> ( x ^ 2 ) = ( E ^ 2 ) ) |
| 179 |
178
|
oveq1d |
|- ( x = E -> ( ( x ^ 2 ) + ( y ^ 2 ) ) = ( ( E ^ 2 ) + ( y ^ 2 ) ) ) |
| 180 |
179
|
eqeq2d |
|- ( x = E -> ( ( ( E ^ 2 ) + ( F ^ 2 ) ) = ( ( x ^ 2 ) + ( y ^ 2 ) ) <-> ( ( E ^ 2 ) + ( F ^ 2 ) ) = ( ( E ^ 2 ) + ( y ^ 2 ) ) ) ) |
| 181 |
177 180
|
anbi12d |
|- ( x = E -> ( ( ( x gcd y ) = 1 /\ ( ( E ^ 2 ) + ( F ^ 2 ) ) = ( ( x ^ 2 ) + ( y ^ 2 ) ) ) <-> ( ( E gcd y ) = 1 /\ ( ( E ^ 2 ) + ( F ^ 2 ) ) = ( ( E ^ 2 ) + ( y ^ 2 ) ) ) ) ) |
| 182 |
|
oveq2 |
|- ( y = F -> ( E gcd y ) = ( E gcd F ) ) |
| 183 |
182
|
eqeq1d |
|- ( y = F -> ( ( E gcd y ) = 1 <-> ( E gcd F ) = 1 ) ) |
| 184 |
|
oveq1 |
|- ( y = F -> ( y ^ 2 ) = ( F ^ 2 ) ) |
| 185 |
184
|
oveq2d |
|- ( y = F -> ( ( E ^ 2 ) + ( y ^ 2 ) ) = ( ( E ^ 2 ) + ( F ^ 2 ) ) ) |
| 186 |
185
|
eqeq2d |
|- ( y = F -> ( ( ( E ^ 2 ) + ( F ^ 2 ) ) = ( ( E ^ 2 ) + ( y ^ 2 ) ) <-> ( ( E ^ 2 ) + ( F ^ 2 ) ) = ( ( E ^ 2 ) + ( F ^ 2 ) ) ) ) |
| 187 |
183 186
|
anbi12d |
|- ( y = F -> ( ( ( E gcd y ) = 1 /\ ( ( E ^ 2 ) + ( F ^ 2 ) ) = ( ( E ^ 2 ) + ( y ^ 2 ) ) ) <-> ( ( E gcd F ) = 1 /\ ( ( E ^ 2 ) + ( F ^ 2 ) ) = ( ( E ^ 2 ) + ( F ^ 2 ) ) ) ) ) |
| 188 |
181 187
|
rspc2ev |
|- ( ( E e. ZZ /\ F e. ZZ /\ ( ( E gcd F ) = 1 /\ ( ( E ^ 2 ) + ( F ^ 2 ) ) = ( ( E ^ 2 ) + ( F ^ 2 ) ) ) ) -> E. x e. ZZ E. y e. ZZ ( ( x gcd y ) = 1 /\ ( ( E ^ 2 ) + ( F ^ 2 ) ) = ( ( x ^ 2 ) + ( y ^ 2 ) ) ) ) |
| 189 |
62 70 174 175 188
|
syl112anc |
|- ( ph -> E. x e. ZZ E. y e. ZZ ( ( x gcd y ) = 1 /\ ( ( E ^ 2 ) + ( F ^ 2 ) ) = ( ( x ^ 2 ) + ( y ^ 2 ) ) ) ) |
| 190 |
|
ovex |
|- ( ( E ^ 2 ) + ( F ^ 2 ) ) e. _V |
| 191 |
|
eqeq1 |
|- ( z = ( ( E ^ 2 ) + ( F ^ 2 ) ) -> ( z = ( ( x ^ 2 ) + ( y ^ 2 ) ) <-> ( ( E ^ 2 ) + ( F ^ 2 ) ) = ( ( x ^ 2 ) + ( y ^ 2 ) ) ) ) |
| 192 |
191
|
anbi2d |
|- ( z = ( ( E ^ 2 ) + ( F ^ 2 ) ) -> ( ( ( x gcd y ) = 1 /\ z = ( ( x ^ 2 ) + ( y ^ 2 ) ) ) <-> ( ( x gcd y ) = 1 /\ ( ( E ^ 2 ) + ( F ^ 2 ) ) = ( ( x ^ 2 ) + ( y ^ 2 ) ) ) ) ) |
| 193 |
192
|
2rexbidv |
|- ( z = ( ( E ^ 2 ) + ( F ^ 2 ) ) -> ( E. x e. ZZ E. y e. ZZ ( ( x gcd y ) = 1 /\ z = ( ( x ^ 2 ) + ( y ^ 2 ) ) ) <-> E. x e. ZZ E. y e. ZZ ( ( x gcd y ) = 1 /\ ( ( E ^ 2 ) + ( F ^ 2 ) ) = ( ( x ^ 2 ) + ( y ^ 2 ) ) ) ) ) |
| 194 |
190 193 2
|
elab2 |
|- ( ( ( E ^ 2 ) + ( F ^ 2 ) ) e. Y <-> E. x e. ZZ E. y e. ZZ ( ( x gcd y ) = 1 /\ ( ( E ^ 2 ) + ( F ^ 2 ) ) = ( ( x ^ 2 ) + ( y ^ 2 ) ) ) ) |
| 195 |
189 194
|
sylibr |
|- ( ph -> ( ( E ^ 2 ) + ( F ^ 2 ) ) e. Y ) |
| 196 |
164 195
|
sselid |
|- ( ph -> ( ( E ^ 2 ) + ( F ^ 2 ) ) e. NN ) |
| 197 |
196
|
nngt0d |
|- ( ph -> 0 < ( ( E ^ 2 ) + ( F ^ 2 ) ) ) |
| 198 |
17
|
nngt0d |
|- ( ph -> 0 < M ) |
| 199 |
160 161 197 198
|
divgt0d |
|- ( ph -> 0 < ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) ) |
| 200 |
|
elnnz |
|- ( ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) e. NN <-> ( ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) e. ZZ /\ 0 < ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) ) ) |
| 201 |
157 199 200
|
sylanbrc |
|- ( ph -> ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) e. NN ) |
| 202 |
|
prmnn |
|- ( p e. Prime -> p e. NN ) |
| 203 |
202
|
ad2antrl |
|- ( ( ph /\ ( p e. Prime /\ p || ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) ) ) -> p e. NN ) |
| 204 |
203
|
nnred |
|- ( ( ph /\ ( p e. Prime /\ p || ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) ) ) -> p e. RR ) |
| 205 |
157
|
adantr |
|- ( ( ph /\ ( p e. Prime /\ p || ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) ) ) -> ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) e. ZZ ) |
| 206 |
205
|
zred |
|- ( ( ph /\ ( p e. Prime /\ p || ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) ) ) -> ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) e. RR ) |
| 207 |
|
peano2zm |
|- ( M e. ZZ -> ( M - 1 ) e. ZZ ) |
| 208 |
19 207
|
syl |
|- ( ph -> ( M - 1 ) e. ZZ ) |
| 209 |
208
|
zred |
|- ( ph -> ( M - 1 ) e. RR ) |
| 210 |
209
|
adantr |
|- ( ( ph /\ ( p e. Prime /\ p || ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) ) ) -> ( M - 1 ) e. RR ) |
| 211 |
|
simprr |
|- ( ( ph /\ ( p e. Prime /\ p || ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) ) ) -> p || ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) ) |
| 212 |
|
prmz |
|- ( p e. Prime -> p e. ZZ ) |
| 213 |
212
|
ad2antrl |
|- ( ( ph /\ ( p e. Prime /\ p || ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) ) ) -> p e. ZZ ) |
| 214 |
201
|
adantr |
|- ( ( ph /\ ( p e. Prime /\ p || ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) ) ) -> ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) e. NN ) |
| 215 |
|
dvdsle |
|- ( ( p e. ZZ /\ ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) e. NN ) -> ( p || ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) -> p <_ ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) ) ) |
| 216 |
213 214 215
|
syl2anc |
|- ( ( ph /\ ( p e. Prime /\ p || ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) ) ) -> ( p || ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) -> p <_ ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) ) ) |
| 217 |
211 216
|
mpd |
|- ( ( ph /\ ( p e. Prime /\ p || ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) ) ) -> p <_ ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) ) |
| 218 |
|
zsqcl |
|- ( M e. ZZ -> ( M ^ 2 ) e. ZZ ) |
| 219 |
19 218
|
syl |
|- ( ph -> ( M ^ 2 ) e. ZZ ) |
| 220 |
219
|
zred |
|- ( ph -> ( M ^ 2 ) e. RR ) |
| 221 |
220
|
rehalfcld |
|- ( ph -> ( ( M ^ 2 ) / 2 ) e. RR ) |
| 222 |
24
|
zred |
|- ( ph -> ( C ^ 2 ) e. RR ) |
| 223 |
28
|
zred |
|- ( ph -> ( D ^ 2 ) e. RR ) |
| 224 |
222 223
|
readdcld |
|- ( ph -> ( ( C ^ 2 ) + ( D ^ 2 ) ) e. RR ) |
| 225 |
|
1red |
|- ( ph -> 1 e. RR ) |
| 226 |
50
|
nnsqcld |
|- ( ph -> ( ( C gcd D ) ^ 2 ) e. NN ) |
| 227 |
226
|
nnred |
|- ( ph -> ( ( C gcd D ) ^ 2 ) e. RR ) |
| 228 |
150
|
nn0ge0d |
|- ( ph -> 0 <_ ( ( E ^ 2 ) + ( F ^ 2 ) ) ) |
| 229 |
226
|
nnge1d |
|- ( ph -> 1 <_ ( ( C gcd D ) ^ 2 ) ) |
| 230 |
225 227 160 228 229
|
lemul1ad |
|- ( ph -> ( 1 x. ( ( E ^ 2 ) + ( F ^ 2 ) ) ) <_ ( ( ( C gcd D ) ^ 2 ) x. ( ( E ^ 2 ) + ( F ^ 2 ) ) ) ) |
| 231 |
150
|
nn0cnd |
|- ( ph -> ( ( E ^ 2 ) + ( F ^ 2 ) ) e. CC ) |
| 232 |
231
|
mullidd |
|- ( ph -> ( 1 x. ( ( E ^ 2 ) + ( F ^ 2 ) ) ) = ( ( E ^ 2 ) + ( F ^ 2 ) ) ) |
| 233 |
230 232 93
|
3brtr3d |
|- ( ph -> ( ( E ^ 2 ) + ( F ^ 2 ) ) <_ ( ( C ^ 2 ) + ( D ^ 2 ) ) ) |
| 234 |
221
|
rehalfcld |
|- ( ph -> ( ( ( M ^ 2 ) / 2 ) / 2 ) e. RR ) |
| 235 |
7 17 11
|
4sqlem7 |
|- ( ph -> ( C ^ 2 ) <_ ( ( ( M ^ 2 ) / 2 ) / 2 ) ) |
| 236 |
8 17 12
|
4sqlem7 |
|- ( ph -> ( D ^ 2 ) <_ ( ( ( M ^ 2 ) / 2 ) / 2 ) ) |
| 237 |
222 223 234 234 235 236
|
le2addd |
|- ( ph -> ( ( C ^ 2 ) + ( D ^ 2 ) ) <_ ( ( ( ( M ^ 2 ) / 2 ) / 2 ) + ( ( ( M ^ 2 ) / 2 ) / 2 ) ) ) |
| 238 |
221
|
recnd |
|- ( ph -> ( ( M ^ 2 ) / 2 ) e. CC ) |
| 239 |
238
|
2halvesd |
|- ( ph -> ( ( ( ( M ^ 2 ) / 2 ) / 2 ) + ( ( ( M ^ 2 ) / 2 ) / 2 ) ) = ( ( M ^ 2 ) / 2 ) ) |
| 240 |
237 239
|
breqtrd |
|- ( ph -> ( ( C ^ 2 ) + ( D ^ 2 ) ) <_ ( ( M ^ 2 ) / 2 ) ) |
| 241 |
160 224 221 233 240
|
letrd |
|- ( ph -> ( ( E ^ 2 ) + ( F ^ 2 ) ) <_ ( ( M ^ 2 ) / 2 ) ) |
| 242 |
17
|
nnsqcld |
|- ( ph -> ( M ^ 2 ) e. NN ) |
| 243 |
242
|
nnrpd |
|- ( ph -> ( M ^ 2 ) e. RR+ ) |
| 244 |
|
rphalflt |
|- ( ( M ^ 2 ) e. RR+ -> ( ( M ^ 2 ) / 2 ) < ( M ^ 2 ) ) |
| 245 |
243 244
|
syl |
|- ( ph -> ( ( M ^ 2 ) / 2 ) < ( M ^ 2 ) ) |
| 246 |
160 221 220 241 245
|
lelttrd |
|- ( ph -> ( ( E ^ 2 ) + ( F ^ 2 ) ) < ( M ^ 2 ) ) |
| 247 |
19
|
zcnd |
|- ( ph -> M e. CC ) |
| 248 |
247
|
sqvald |
|- ( ph -> ( M ^ 2 ) = ( M x. M ) ) |
| 249 |
246 248
|
breqtrd |
|- ( ph -> ( ( E ^ 2 ) + ( F ^ 2 ) ) < ( M x. M ) ) |
| 250 |
|
ltdivmul |
|- ( ( ( ( E ^ 2 ) + ( F ^ 2 ) ) e. RR /\ M e. RR /\ ( M e. RR /\ 0 < M ) ) -> ( ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) < M <-> ( ( E ^ 2 ) + ( F ^ 2 ) ) < ( M x. M ) ) ) |
| 251 |
160 161 161 198 250
|
syl112anc |
|- ( ph -> ( ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) < M <-> ( ( E ^ 2 ) + ( F ^ 2 ) ) < ( M x. M ) ) ) |
| 252 |
249 251
|
mpbird |
|- ( ph -> ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) < M ) |
| 253 |
|
zltlem1 |
|- ( ( ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) e. ZZ /\ M e. ZZ ) -> ( ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) < M <-> ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) <_ ( M - 1 ) ) ) |
| 254 |
157 19 253
|
syl2anc |
|- ( ph -> ( ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) < M <-> ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) <_ ( M - 1 ) ) ) |
| 255 |
252 254
|
mpbid |
|- ( ph -> ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) <_ ( M - 1 ) ) |
| 256 |
255
|
adantr |
|- ( ( ph /\ ( p e. Prime /\ p || ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) ) ) -> ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) <_ ( M - 1 ) ) |
| 257 |
204 206 210 217 256
|
letrd |
|- ( ( ph /\ ( p e. Prime /\ p || ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) ) ) -> p <_ ( M - 1 ) ) |
| 258 |
208
|
adantr |
|- ( ( ph /\ ( p e. Prime /\ p || ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) ) ) -> ( M - 1 ) e. ZZ ) |
| 259 |
|
fznn |
|- ( ( M - 1 ) e. ZZ -> ( p e. ( 1 ... ( M - 1 ) ) <-> ( p e. NN /\ p <_ ( M - 1 ) ) ) ) |
| 260 |
258 259
|
syl |
|- ( ( ph /\ ( p e. Prime /\ p || ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) ) ) -> ( p e. ( 1 ... ( M - 1 ) ) <-> ( p e. NN /\ p <_ ( M - 1 ) ) ) ) |
| 261 |
203 257 260
|
mpbir2and |
|- ( ( ph /\ ( p e. Prime /\ p || ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) ) ) -> p e. ( 1 ... ( M - 1 ) ) ) |
| 262 |
195
|
adantr |
|- ( ( ph /\ ( p e. Prime /\ p || ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) ) ) -> ( ( E ^ 2 ) + ( F ^ 2 ) ) e. Y ) |
| 263 |
261 262
|
jca |
|- ( ( ph /\ ( p e. Prime /\ p || ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) ) ) -> ( p e. ( 1 ... ( M - 1 ) ) /\ ( ( E ^ 2 ) + ( F ^ 2 ) ) e. Y ) ) |
| 264 |
3
|
adantr |
|- ( ( ph /\ ( p e. Prime /\ p || ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) ) ) -> A. b e. ( 1 ... ( M - 1 ) ) A. a e. Y ( b || a -> b e. S ) ) |
| 265 |
151
|
adantr |
|- ( ( ph /\ ( p e. Prime /\ p || ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) ) ) -> ( ( E ^ 2 ) + ( F ^ 2 ) ) e. ZZ ) |
| 266 |
|
dvdsmul2 |
|- ( ( M e. ZZ /\ ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) e. ZZ ) -> ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) || ( M x. ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) ) ) |
| 267 |
19 157 266
|
syl2anc |
|- ( ph -> ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) || ( M x. ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) ) ) |
| 268 |
231 247 107
|
divcan2d |
|- ( ph -> ( M x. ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) ) = ( ( E ^ 2 ) + ( F ^ 2 ) ) ) |
| 269 |
267 268
|
breqtrd |
|- ( ph -> ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) || ( ( E ^ 2 ) + ( F ^ 2 ) ) ) |
| 270 |
269
|
adantr |
|- ( ( ph /\ ( p e. Prime /\ p || ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) ) ) -> ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) || ( ( E ^ 2 ) + ( F ^ 2 ) ) ) |
| 271 |
213 205 265 211 270
|
dvdstrd |
|- ( ( ph /\ ( p e. Prime /\ p || ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) ) ) -> p || ( ( E ^ 2 ) + ( F ^ 2 ) ) ) |
| 272 |
|
breq1 |
|- ( b = p -> ( b || a <-> p || a ) ) |
| 273 |
|
eleq1w |
|- ( b = p -> ( b e. S <-> p e. S ) ) |
| 274 |
272 273
|
imbi12d |
|- ( b = p -> ( ( b || a -> b e. S ) <-> ( p || a -> p e. S ) ) ) |
| 275 |
|
breq2 |
|- ( a = ( ( E ^ 2 ) + ( F ^ 2 ) ) -> ( p || a <-> p || ( ( E ^ 2 ) + ( F ^ 2 ) ) ) ) |
| 276 |
275
|
imbi1d |
|- ( a = ( ( E ^ 2 ) + ( F ^ 2 ) ) -> ( ( p || a -> p e. S ) <-> ( p || ( ( E ^ 2 ) + ( F ^ 2 ) ) -> p e. S ) ) ) |
| 277 |
274 276
|
rspc2v |
|- ( ( p e. ( 1 ... ( M - 1 ) ) /\ ( ( E ^ 2 ) + ( F ^ 2 ) ) e. Y ) -> ( A. b e. ( 1 ... ( M - 1 ) ) A. a e. Y ( b || a -> b e. S ) -> ( p || ( ( E ^ 2 ) + ( F ^ 2 ) ) -> p e. S ) ) ) |
| 278 |
263 264 271 277
|
syl3c |
|- ( ( ph /\ ( p e. Prime /\ p || ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) ) ) -> p e. S ) |
| 279 |
278
|
expr |
|- ( ( ph /\ p e. Prime ) -> ( p || ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) -> p e. S ) ) |
| 280 |
279
|
ralrimiva |
|- ( ph -> A. p e. Prime ( p || ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) -> p e. S ) ) |
| 281 |
|
inss1 |
|- ( S i^i NN ) C_ S |
| 282 |
162 281
|
sstri |
|- Y C_ S |
| 283 |
282 195
|
sselid |
|- ( ph -> ( ( E ^ 2 ) + ( F ^ 2 ) ) e. S ) |
| 284 |
268 283
|
eqeltrd |
|- ( ph -> ( M x. ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) ) e. S ) |
| 285 |
1 17 201 280 284
|
2sqlem6 |
|- ( ph -> M e. S ) |