Step |
Hyp |
Ref |
Expression |
1 |
|
2sq.1 |
|- S = ran ( w e. Z[i] |-> ( ( abs ` w ) ^ 2 ) ) |
2 |
|
2sqlem7.2 |
|- Y = { z | E. x e. ZZ E. y e. ZZ ( ( x gcd y ) = 1 /\ z = ( ( x ^ 2 ) + ( y ^ 2 ) ) ) } |
3 |
|
2sqlem9.5 |
|- ( ph -> A. b e. ( 1 ... ( M - 1 ) ) A. a e. Y ( b || a -> b e. S ) ) |
4 |
|
2sqlem9.7 |
|- ( ph -> M || N ) |
5 |
|
2sqlem8.n |
|- ( ph -> N e. NN ) |
6 |
|
2sqlem8.m |
|- ( ph -> M e. ( ZZ>= ` 2 ) ) |
7 |
|
2sqlem8.1 |
|- ( ph -> A e. ZZ ) |
8 |
|
2sqlem8.2 |
|- ( ph -> B e. ZZ ) |
9 |
|
2sqlem8.3 |
|- ( ph -> ( A gcd B ) = 1 ) |
10 |
|
2sqlem8.4 |
|- ( ph -> N = ( ( A ^ 2 ) + ( B ^ 2 ) ) ) |
11 |
|
2sqlem8.c |
|- C = ( ( ( A + ( M / 2 ) ) mod M ) - ( M / 2 ) ) |
12 |
|
2sqlem8.d |
|- D = ( ( ( B + ( M / 2 ) ) mod M ) - ( M / 2 ) ) |
13 |
|
2sqlem8.e |
|- E = ( C / ( C gcd D ) ) |
14 |
|
2sqlem8.f |
|- F = ( D / ( C gcd D ) ) |
15 |
|
eluz2b3 |
|- ( M e. ( ZZ>= ` 2 ) <-> ( M e. NN /\ M =/= 1 ) ) |
16 |
6 15
|
sylib |
|- ( ph -> ( M e. NN /\ M =/= 1 ) ) |
17 |
16
|
simpld |
|- ( ph -> M e. NN ) |
18 |
|
eluzelz |
|- ( M e. ( ZZ>= ` 2 ) -> M e. ZZ ) |
19 |
6 18
|
syl |
|- ( ph -> M e. ZZ ) |
20 |
5
|
nnzd |
|- ( ph -> N e. ZZ ) |
21 |
7 17 11
|
4sqlem5 |
|- ( ph -> ( C e. ZZ /\ ( ( A - C ) / M ) e. ZZ ) ) |
22 |
21
|
simpld |
|- ( ph -> C e. ZZ ) |
23 |
|
zsqcl |
|- ( C e. ZZ -> ( C ^ 2 ) e. ZZ ) |
24 |
22 23
|
syl |
|- ( ph -> ( C ^ 2 ) e. ZZ ) |
25 |
8 17 12
|
4sqlem5 |
|- ( ph -> ( D e. ZZ /\ ( ( B - D ) / M ) e. ZZ ) ) |
26 |
25
|
simpld |
|- ( ph -> D e. ZZ ) |
27 |
|
zsqcl |
|- ( D e. ZZ -> ( D ^ 2 ) e. ZZ ) |
28 |
26 27
|
syl |
|- ( ph -> ( D ^ 2 ) e. ZZ ) |
29 |
24 28
|
zaddcld |
|- ( ph -> ( ( C ^ 2 ) + ( D ^ 2 ) ) e. ZZ ) |
30 |
|
zsqcl |
|- ( A e. ZZ -> ( A ^ 2 ) e. ZZ ) |
31 |
7 30
|
syl |
|- ( ph -> ( A ^ 2 ) e. ZZ ) |
32 |
31 24
|
zsubcld |
|- ( ph -> ( ( A ^ 2 ) - ( C ^ 2 ) ) e. ZZ ) |
33 |
|
zsqcl |
|- ( B e. ZZ -> ( B ^ 2 ) e. ZZ ) |
34 |
8 33
|
syl |
|- ( ph -> ( B ^ 2 ) e. ZZ ) |
35 |
34 28
|
zsubcld |
|- ( ph -> ( ( B ^ 2 ) - ( D ^ 2 ) ) e. ZZ ) |
36 |
7 17 11
|
4sqlem8 |
|- ( ph -> M || ( ( A ^ 2 ) - ( C ^ 2 ) ) ) |
37 |
8 17 12
|
4sqlem8 |
|- ( ph -> M || ( ( B ^ 2 ) - ( D ^ 2 ) ) ) |
38 |
19 32 35 36 37
|
dvds2addd |
|- ( ph -> M || ( ( ( A ^ 2 ) - ( C ^ 2 ) ) + ( ( B ^ 2 ) - ( D ^ 2 ) ) ) ) |
39 |
10
|
oveq1d |
|- ( ph -> ( N - ( ( C ^ 2 ) + ( D ^ 2 ) ) ) = ( ( ( A ^ 2 ) + ( B ^ 2 ) ) - ( ( C ^ 2 ) + ( D ^ 2 ) ) ) ) |
40 |
31
|
zcnd |
|- ( ph -> ( A ^ 2 ) e. CC ) |
41 |
34
|
zcnd |
|- ( ph -> ( B ^ 2 ) e. CC ) |
42 |
24
|
zcnd |
|- ( ph -> ( C ^ 2 ) e. CC ) |
43 |
28
|
zcnd |
|- ( ph -> ( D ^ 2 ) e. CC ) |
44 |
40 41 42 43
|
addsub4d |
|- ( ph -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) - ( ( C ^ 2 ) + ( D ^ 2 ) ) ) = ( ( ( A ^ 2 ) - ( C ^ 2 ) ) + ( ( B ^ 2 ) - ( D ^ 2 ) ) ) ) |
45 |
39 44
|
eqtrd |
|- ( ph -> ( N - ( ( C ^ 2 ) + ( D ^ 2 ) ) ) = ( ( ( A ^ 2 ) - ( C ^ 2 ) ) + ( ( B ^ 2 ) - ( D ^ 2 ) ) ) ) |
46 |
38 45
|
breqtrrd |
|- ( ph -> M || ( N - ( ( C ^ 2 ) + ( D ^ 2 ) ) ) ) |
47 |
|
dvdssub2 |
|- ( ( ( M e. ZZ /\ N e. ZZ /\ ( ( C ^ 2 ) + ( D ^ 2 ) ) e. ZZ ) /\ M || ( N - ( ( C ^ 2 ) + ( D ^ 2 ) ) ) ) -> ( M || N <-> M || ( ( C ^ 2 ) + ( D ^ 2 ) ) ) ) |
48 |
19 20 29 46 47
|
syl31anc |
|- ( ph -> ( M || N <-> M || ( ( C ^ 2 ) + ( D ^ 2 ) ) ) ) |
49 |
4 48
|
mpbid |
|- ( ph -> M || ( ( C ^ 2 ) + ( D ^ 2 ) ) ) |
50 |
1 2 3 4 5 6 7 8 9 10 11 12
|
2sqlem8a |
|- ( ph -> ( C gcd D ) e. NN ) |
51 |
50
|
nnzd |
|- ( ph -> ( C gcd D ) e. ZZ ) |
52 |
|
zsqcl2 |
|- ( ( C gcd D ) e. ZZ -> ( ( C gcd D ) ^ 2 ) e. NN0 ) |
53 |
51 52
|
syl |
|- ( ph -> ( ( C gcd D ) ^ 2 ) e. NN0 ) |
54 |
53
|
nn0cnd |
|- ( ph -> ( ( C gcd D ) ^ 2 ) e. CC ) |
55 |
|
gcddvds |
|- ( ( C e. ZZ /\ D e. ZZ ) -> ( ( C gcd D ) || C /\ ( C gcd D ) || D ) ) |
56 |
22 26 55
|
syl2anc |
|- ( ph -> ( ( C gcd D ) || C /\ ( C gcd D ) || D ) ) |
57 |
56
|
simpld |
|- ( ph -> ( C gcd D ) || C ) |
58 |
50
|
nnne0d |
|- ( ph -> ( C gcd D ) =/= 0 ) |
59 |
|
dvdsval2 |
|- ( ( ( C gcd D ) e. ZZ /\ ( C gcd D ) =/= 0 /\ C e. ZZ ) -> ( ( C gcd D ) || C <-> ( C / ( C gcd D ) ) e. ZZ ) ) |
60 |
51 58 22 59
|
syl3anc |
|- ( ph -> ( ( C gcd D ) || C <-> ( C / ( C gcd D ) ) e. ZZ ) ) |
61 |
57 60
|
mpbid |
|- ( ph -> ( C / ( C gcd D ) ) e. ZZ ) |
62 |
13 61
|
eqeltrid |
|- ( ph -> E e. ZZ ) |
63 |
|
zsqcl2 |
|- ( E e. ZZ -> ( E ^ 2 ) e. NN0 ) |
64 |
62 63
|
syl |
|- ( ph -> ( E ^ 2 ) e. NN0 ) |
65 |
64
|
nn0cnd |
|- ( ph -> ( E ^ 2 ) e. CC ) |
66 |
56
|
simprd |
|- ( ph -> ( C gcd D ) || D ) |
67 |
|
dvdsval2 |
|- ( ( ( C gcd D ) e. ZZ /\ ( C gcd D ) =/= 0 /\ D e. ZZ ) -> ( ( C gcd D ) || D <-> ( D / ( C gcd D ) ) e. ZZ ) ) |
68 |
51 58 26 67
|
syl3anc |
|- ( ph -> ( ( C gcd D ) || D <-> ( D / ( C gcd D ) ) e. ZZ ) ) |
69 |
66 68
|
mpbid |
|- ( ph -> ( D / ( C gcd D ) ) e. ZZ ) |
70 |
14 69
|
eqeltrid |
|- ( ph -> F e. ZZ ) |
71 |
|
zsqcl2 |
|- ( F e. ZZ -> ( F ^ 2 ) e. NN0 ) |
72 |
70 71
|
syl |
|- ( ph -> ( F ^ 2 ) e. NN0 ) |
73 |
72
|
nn0cnd |
|- ( ph -> ( F ^ 2 ) e. CC ) |
74 |
54 65 73
|
adddid |
|- ( ph -> ( ( ( C gcd D ) ^ 2 ) x. ( ( E ^ 2 ) + ( F ^ 2 ) ) ) = ( ( ( ( C gcd D ) ^ 2 ) x. ( E ^ 2 ) ) + ( ( ( C gcd D ) ^ 2 ) x. ( F ^ 2 ) ) ) ) |
75 |
51
|
zcnd |
|- ( ph -> ( C gcd D ) e. CC ) |
76 |
62
|
zcnd |
|- ( ph -> E e. CC ) |
77 |
75 76
|
sqmuld |
|- ( ph -> ( ( ( C gcd D ) x. E ) ^ 2 ) = ( ( ( C gcd D ) ^ 2 ) x. ( E ^ 2 ) ) ) |
78 |
13
|
oveq2i |
|- ( ( C gcd D ) x. E ) = ( ( C gcd D ) x. ( C / ( C gcd D ) ) ) |
79 |
22
|
zcnd |
|- ( ph -> C e. CC ) |
80 |
79 75 58
|
divcan2d |
|- ( ph -> ( ( C gcd D ) x. ( C / ( C gcd D ) ) ) = C ) |
81 |
78 80
|
syl5eq |
|- ( ph -> ( ( C gcd D ) x. E ) = C ) |
82 |
81
|
oveq1d |
|- ( ph -> ( ( ( C gcd D ) x. E ) ^ 2 ) = ( C ^ 2 ) ) |
83 |
77 82
|
eqtr3d |
|- ( ph -> ( ( ( C gcd D ) ^ 2 ) x. ( E ^ 2 ) ) = ( C ^ 2 ) ) |
84 |
70
|
zcnd |
|- ( ph -> F e. CC ) |
85 |
75 84
|
sqmuld |
|- ( ph -> ( ( ( C gcd D ) x. F ) ^ 2 ) = ( ( ( C gcd D ) ^ 2 ) x. ( F ^ 2 ) ) ) |
86 |
14
|
oveq2i |
|- ( ( C gcd D ) x. F ) = ( ( C gcd D ) x. ( D / ( C gcd D ) ) ) |
87 |
26
|
zcnd |
|- ( ph -> D e. CC ) |
88 |
87 75 58
|
divcan2d |
|- ( ph -> ( ( C gcd D ) x. ( D / ( C gcd D ) ) ) = D ) |
89 |
86 88
|
syl5eq |
|- ( ph -> ( ( C gcd D ) x. F ) = D ) |
90 |
89
|
oveq1d |
|- ( ph -> ( ( ( C gcd D ) x. F ) ^ 2 ) = ( D ^ 2 ) ) |
91 |
85 90
|
eqtr3d |
|- ( ph -> ( ( ( C gcd D ) ^ 2 ) x. ( F ^ 2 ) ) = ( D ^ 2 ) ) |
92 |
83 91
|
oveq12d |
|- ( ph -> ( ( ( ( C gcd D ) ^ 2 ) x. ( E ^ 2 ) ) + ( ( ( C gcd D ) ^ 2 ) x. ( F ^ 2 ) ) ) = ( ( C ^ 2 ) + ( D ^ 2 ) ) ) |
93 |
74 92
|
eqtrd |
|- ( ph -> ( ( ( C gcd D ) ^ 2 ) x. ( ( E ^ 2 ) + ( F ^ 2 ) ) ) = ( ( C ^ 2 ) + ( D ^ 2 ) ) ) |
94 |
49 93
|
breqtrrd |
|- ( ph -> M || ( ( ( C gcd D ) ^ 2 ) x. ( ( E ^ 2 ) + ( F ^ 2 ) ) ) ) |
95 |
|
zsqcl |
|- ( ( C gcd D ) e. ZZ -> ( ( C gcd D ) ^ 2 ) e. ZZ ) |
96 |
51 95
|
syl |
|- ( ph -> ( ( C gcd D ) ^ 2 ) e. ZZ ) |
97 |
19 96
|
gcdcomd |
|- ( ph -> ( M gcd ( ( C gcd D ) ^ 2 ) ) = ( ( ( C gcd D ) ^ 2 ) gcd M ) ) |
98 |
51 19
|
gcdcld |
|- ( ph -> ( ( C gcd D ) gcd M ) e. NN0 ) |
99 |
98
|
nn0zd |
|- ( ph -> ( ( C gcd D ) gcd M ) e. ZZ ) |
100 |
|
gcddvds |
|- ( ( ( C gcd D ) e. ZZ /\ M e. ZZ ) -> ( ( ( C gcd D ) gcd M ) || ( C gcd D ) /\ ( ( C gcd D ) gcd M ) || M ) ) |
101 |
51 19 100
|
syl2anc |
|- ( ph -> ( ( ( C gcd D ) gcd M ) || ( C gcd D ) /\ ( ( C gcd D ) gcd M ) || M ) ) |
102 |
101
|
simpld |
|- ( ph -> ( ( C gcd D ) gcd M ) || ( C gcd D ) ) |
103 |
99 51 22 102 57
|
dvdstrd |
|- ( ph -> ( ( C gcd D ) gcd M ) || C ) |
104 |
7 22
|
zsubcld |
|- ( ph -> ( A - C ) e. ZZ ) |
105 |
101
|
simprd |
|- ( ph -> ( ( C gcd D ) gcd M ) || M ) |
106 |
21
|
simprd |
|- ( ph -> ( ( A - C ) / M ) e. ZZ ) |
107 |
17
|
nnne0d |
|- ( ph -> M =/= 0 ) |
108 |
|
dvdsval2 |
|- ( ( M e. ZZ /\ M =/= 0 /\ ( A - C ) e. ZZ ) -> ( M || ( A - C ) <-> ( ( A - C ) / M ) e. ZZ ) ) |
109 |
19 107 104 108
|
syl3anc |
|- ( ph -> ( M || ( A - C ) <-> ( ( A - C ) / M ) e. ZZ ) ) |
110 |
106 109
|
mpbird |
|- ( ph -> M || ( A - C ) ) |
111 |
99 19 104 105 110
|
dvdstrd |
|- ( ph -> ( ( C gcd D ) gcd M ) || ( A - C ) ) |
112 |
|
dvdssub2 |
|- ( ( ( ( ( C gcd D ) gcd M ) e. ZZ /\ A e. ZZ /\ C e. ZZ ) /\ ( ( C gcd D ) gcd M ) || ( A - C ) ) -> ( ( ( C gcd D ) gcd M ) || A <-> ( ( C gcd D ) gcd M ) || C ) ) |
113 |
99 7 22 111 112
|
syl31anc |
|- ( ph -> ( ( ( C gcd D ) gcd M ) || A <-> ( ( C gcd D ) gcd M ) || C ) ) |
114 |
103 113
|
mpbird |
|- ( ph -> ( ( C gcd D ) gcd M ) || A ) |
115 |
99 51 26 102 66
|
dvdstrd |
|- ( ph -> ( ( C gcd D ) gcd M ) || D ) |
116 |
8 26
|
zsubcld |
|- ( ph -> ( B - D ) e. ZZ ) |
117 |
25
|
simprd |
|- ( ph -> ( ( B - D ) / M ) e. ZZ ) |
118 |
|
dvdsval2 |
|- ( ( M e. ZZ /\ M =/= 0 /\ ( B - D ) e. ZZ ) -> ( M || ( B - D ) <-> ( ( B - D ) / M ) e. ZZ ) ) |
119 |
19 107 116 118
|
syl3anc |
|- ( ph -> ( M || ( B - D ) <-> ( ( B - D ) / M ) e. ZZ ) ) |
120 |
117 119
|
mpbird |
|- ( ph -> M || ( B - D ) ) |
121 |
99 19 116 105 120
|
dvdstrd |
|- ( ph -> ( ( C gcd D ) gcd M ) || ( B - D ) ) |
122 |
|
dvdssub2 |
|- ( ( ( ( ( C gcd D ) gcd M ) e. ZZ /\ B e. ZZ /\ D e. ZZ ) /\ ( ( C gcd D ) gcd M ) || ( B - D ) ) -> ( ( ( C gcd D ) gcd M ) || B <-> ( ( C gcd D ) gcd M ) || D ) ) |
123 |
99 8 26 121 122
|
syl31anc |
|- ( ph -> ( ( ( C gcd D ) gcd M ) || B <-> ( ( C gcd D ) gcd M ) || D ) ) |
124 |
115 123
|
mpbird |
|- ( ph -> ( ( C gcd D ) gcd M ) || B ) |
125 |
|
ax-1ne0 |
|- 1 =/= 0 |
126 |
125
|
a1i |
|- ( ph -> 1 =/= 0 ) |
127 |
9 126
|
eqnetrd |
|- ( ph -> ( A gcd B ) =/= 0 ) |
128 |
127
|
neneqd |
|- ( ph -> -. ( A gcd B ) = 0 ) |
129 |
|
gcdeq0 |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( A gcd B ) = 0 <-> ( A = 0 /\ B = 0 ) ) ) |
130 |
7 8 129
|
syl2anc |
|- ( ph -> ( ( A gcd B ) = 0 <-> ( A = 0 /\ B = 0 ) ) ) |
131 |
128 130
|
mtbid |
|- ( ph -> -. ( A = 0 /\ B = 0 ) ) |
132 |
|
dvdslegcd |
|- ( ( ( ( ( C gcd D ) gcd M ) e. ZZ /\ A e. ZZ /\ B e. ZZ ) /\ -. ( A = 0 /\ B = 0 ) ) -> ( ( ( ( C gcd D ) gcd M ) || A /\ ( ( C gcd D ) gcd M ) || B ) -> ( ( C gcd D ) gcd M ) <_ ( A gcd B ) ) ) |
133 |
99 7 8 131 132
|
syl31anc |
|- ( ph -> ( ( ( ( C gcd D ) gcd M ) || A /\ ( ( C gcd D ) gcd M ) || B ) -> ( ( C gcd D ) gcd M ) <_ ( A gcd B ) ) ) |
134 |
114 124 133
|
mp2and |
|- ( ph -> ( ( C gcd D ) gcd M ) <_ ( A gcd B ) ) |
135 |
134 9
|
breqtrd |
|- ( ph -> ( ( C gcd D ) gcd M ) <_ 1 ) |
136 |
|
simpr |
|- ( ( ( C gcd D ) = 0 /\ M = 0 ) -> M = 0 ) |
137 |
136
|
necon3ai |
|- ( M =/= 0 -> -. ( ( C gcd D ) = 0 /\ M = 0 ) ) |
138 |
107 137
|
syl |
|- ( ph -> -. ( ( C gcd D ) = 0 /\ M = 0 ) ) |
139 |
|
gcdn0cl |
|- ( ( ( ( C gcd D ) e. ZZ /\ M e. ZZ ) /\ -. ( ( C gcd D ) = 0 /\ M = 0 ) ) -> ( ( C gcd D ) gcd M ) e. NN ) |
140 |
51 19 138 139
|
syl21anc |
|- ( ph -> ( ( C gcd D ) gcd M ) e. NN ) |
141 |
|
nnle1eq1 |
|- ( ( ( C gcd D ) gcd M ) e. NN -> ( ( ( C gcd D ) gcd M ) <_ 1 <-> ( ( C gcd D ) gcd M ) = 1 ) ) |
142 |
140 141
|
syl |
|- ( ph -> ( ( ( C gcd D ) gcd M ) <_ 1 <-> ( ( C gcd D ) gcd M ) = 1 ) ) |
143 |
135 142
|
mpbid |
|- ( ph -> ( ( C gcd D ) gcd M ) = 1 ) |
144 |
|
2nn |
|- 2 e. NN |
145 |
144
|
a1i |
|- ( ph -> 2 e. NN ) |
146 |
|
rplpwr |
|- ( ( ( C gcd D ) e. NN /\ M e. NN /\ 2 e. NN ) -> ( ( ( C gcd D ) gcd M ) = 1 -> ( ( ( C gcd D ) ^ 2 ) gcd M ) = 1 ) ) |
147 |
50 17 145 146
|
syl3anc |
|- ( ph -> ( ( ( C gcd D ) gcd M ) = 1 -> ( ( ( C gcd D ) ^ 2 ) gcd M ) = 1 ) ) |
148 |
143 147
|
mpd |
|- ( ph -> ( ( ( C gcd D ) ^ 2 ) gcd M ) = 1 ) |
149 |
97 148
|
eqtrd |
|- ( ph -> ( M gcd ( ( C gcd D ) ^ 2 ) ) = 1 ) |
150 |
64 72
|
nn0addcld |
|- ( ph -> ( ( E ^ 2 ) + ( F ^ 2 ) ) e. NN0 ) |
151 |
150
|
nn0zd |
|- ( ph -> ( ( E ^ 2 ) + ( F ^ 2 ) ) e. ZZ ) |
152 |
|
coprmdvds |
|- ( ( M e. ZZ /\ ( ( C gcd D ) ^ 2 ) e. ZZ /\ ( ( E ^ 2 ) + ( F ^ 2 ) ) e. ZZ ) -> ( ( M || ( ( ( C gcd D ) ^ 2 ) x. ( ( E ^ 2 ) + ( F ^ 2 ) ) ) /\ ( M gcd ( ( C gcd D ) ^ 2 ) ) = 1 ) -> M || ( ( E ^ 2 ) + ( F ^ 2 ) ) ) ) |
153 |
19 96 151 152
|
syl3anc |
|- ( ph -> ( ( M || ( ( ( C gcd D ) ^ 2 ) x. ( ( E ^ 2 ) + ( F ^ 2 ) ) ) /\ ( M gcd ( ( C gcd D ) ^ 2 ) ) = 1 ) -> M || ( ( E ^ 2 ) + ( F ^ 2 ) ) ) ) |
154 |
94 149 153
|
mp2and |
|- ( ph -> M || ( ( E ^ 2 ) + ( F ^ 2 ) ) ) |
155 |
|
dvdsval2 |
|- ( ( M e. ZZ /\ M =/= 0 /\ ( ( E ^ 2 ) + ( F ^ 2 ) ) e. ZZ ) -> ( M || ( ( E ^ 2 ) + ( F ^ 2 ) ) <-> ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) e. ZZ ) ) |
156 |
19 107 151 155
|
syl3anc |
|- ( ph -> ( M || ( ( E ^ 2 ) + ( F ^ 2 ) ) <-> ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) e. ZZ ) ) |
157 |
154 156
|
mpbid |
|- ( ph -> ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) e. ZZ ) |
158 |
64
|
nn0red |
|- ( ph -> ( E ^ 2 ) e. RR ) |
159 |
72
|
nn0red |
|- ( ph -> ( F ^ 2 ) e. RR ) |
160 |
158 159
|
readdcld |
|- ( ph -> ( ( E ^ 2 ) + ( F ^ 2 ) ) e. RR ) |
161 |
17
|
nnred |
|- ( ph -> M e. RR ) |
162 |
1 2
|
2sqlem7 |
|- Y C_ ( S i^i NN ) |
163 |
|
inss2 |
|- ( S i^i NN ) C_ NN |
164 |
162 163
|
sstri |
|- Y C_ NN |
165 |
62 70
|
gcdcld |
|- ( ph -> ( E gcd F ) e. NN0 ) |
166 |
165
|
nn0cnd |
|- ( ph -> ( E gcd F ) e. CC ) |
167 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
168 |
75
|
mulid1d |
|- ( ph -> ( ( C gcd D ) x. 1 ) = ( C gcd D ) ) |
169 |
81 89
|
oveq12d |
|- ( ph -> ( ( ( C gcd D ) x. E ) gcd ( ( C gcd D ) x. F ) ) = ( C gcd D ) ) |
170 |
22 26
|
gcdcld |
|- ( ph -> ( C gcd D ) e. NN0 ) |
171 |
|
mulgcd |
|- ( ( ( C gcd D ) e. NN0 /\ E e. ZZ /\ F e. ZZ ) -> ( ( ( C gcd D ) x. E ) gcd ( ( C gcd D ) x. F ) ) = ( ( C gcd D ) x. ( E gcd F ) ) ) |
172 |
170 62 70 171
|
syl3anc |
|- ( ph -> ( ( ( C gcd D ) x. E ) gcd ( ( C gcd D ) x. F ) ) = ( ( C gcd D ) x. ( E gcd F ) ) ) |
173 |
168 169 172
|
3eqtr2rd |
|- ( ph -> ( ( C gcd D ) x. ( E gcd F ) ) = ( ( C gcd D ) x. 1 ) ) |
174 |
166 167 75 58 173
|
mulcanad |
|- ( ph -> ( E gcd F ) = 1 ) |
175 |
|
eqidd |
|- ( ph -> ( ( E ^ 2 ) + ( F ^ 2 ) ) = ( ( E ^ 2 ) + ( F ^ 2 ) ) ) |
176 |
|
oveq1 |
|- ( x = E -> ( x gcd y ) = ( E gcd y ) ) |
177 |
176
|
eqeq1d |
|- ( x = E -> ( ( x gcd y ) = 1 <-> ( E gcd y ) = 1 ) ) |
178 |
|
oveq1 |
|- ( x = E -> ( x ^ 2 ) = ( E ^ 2 ) ) |
179 |
178
|
oveq1d |
|- ( x = E -> ( ( x ^ 2 ) + ( y ^ 2 ) ) = ( ( E ^ 2 ) + ( y ^ 2 ) ) ) |
180 |
179
|
eqeq2d |
|- ( x = E -> ( ( ( E ^ 2 ) + ( F ^ 2 ) ) = ( ( x ^ 2 ) + ( y ^ 2 ) ) <-> ( ( E ^ 2 ) + ( F ^ 2 ) ) = ( ( E ^ 2 ) + ( y ^ 2 ) ) ) ) |
181 |
177 180
|
anbi12d |
|- ( x = E -> ( ( ( x gcd y ) = 1 /\ ( ( E ^ 2 ) + ( F ^ 2 ) ) = ( ( x ^ 2 ) + ( y ^ 2 ) ) ) <-> ( ( E gcd y ) = 1 /\ ( ( E ^ 2 ) + ( F ^ 2 ) ) = ( ( E ^ 2 ) + ( y ^ 2 ) ) ) ) ) |
182 |
|
oveq2 |
|- ( y = F -> ( E gcd y ) = ( E gcd F ) ) |
183 |
182
|
eqeq1d |
|- ( y = F -> ( ( E gcd y ) = 1 <-> ( E gcd F ) = 1 ) ) |
184 |
|
oveq1 |
|- ( y = F -> ( y ^ 2 ) = ( F ^ 2 ) ) |
185 |
184
|
oveq2d |
|- ( y = F -> ( ( E ^ 2 ) + ( y ^ 2 ) ) = ( ( E ^ 2 ) + ( F ^ 2 ) ) ) |
186 |
185
|
eqeq2d |
|- ( y = F -> ( ( ( E ^ 2 ) + ( F ^ 2 ) ) = ( ( E ^ 2 ) + ( y ^ 2 ) ) <-> ( ( E ^ 2 ) + ( F ^ 2 ) ) = ( ( E ^ 2 ) + ( F ^ 2 ) ) ) ) |
187 |
183 186
|
anbi12d |
|- ( y = F -> ( ( ( E gcd y ) = 1 /\ ( ( E ^ 2 ) + ( F ^ 2 ) ) = ( ( E ^ 2 ) + ( y ^ 2 ) ) ) <-> ( ( E gcd F ) = 1 /\ ( ( E ^ 2 ) + ( F ^ 2 ) ) = ( ( E ^ 2 ) + ( F ^ 2 ) ) ) ) ) |
188 |
181 187
|
rspc2ev |
|- ( ( E e. ZZ /\ F e. ZZ /\ ( ( E gcd F ) = 1 /\ ( ( E ^ 2 ) + ( F ^ 2 ) ) = ( ( E ^ 2 ) + ( F ^ 2 ) ) ) ) -> E. x e. ZZ E. y e. ZZ ( ( x gcd y ) = 1 /\ ( ( E ^ 2 ) + ( F ^ 2 ) ) = ( ( x ^ 2 ) + ( y ^ 2 ) ) ) ) |
189 |
62 70 174 175 188
|
syl112anc |
|- ( ph -> E. x e. ZZ E. y e. ZZ ( ( x gcd y ) = 1 /\ ( ( E ^ 2 ) + ( F ^ 2 ) ) = ( ( x ^ 2 ) + ( y ^ 2 ) ) ) ) |
190 |
|
ovex |
|- ( ( E ^ 2 ) + ( F ^ 2 ) ) e. _V |
191 |
|
eqeq1 |
|- ( z = ( ( E ^ 2 ) + ( F ^ 2 ) ) -> ( z = ( ( x ^ 2 ) + ( y ^ 2 ) ) <-> ( ( E ^ 2 ) + ( F ^ 2 ) ) = ( ( x ^ 2 ) + ( y ^ 2 ) ) ) ) |
192 |
191
|
anbi2d |
|- ( z = ( ( E ^ 2 ) + ( F ^ 2 ) ) -> ( ( ( x gcd y ) = 1 /\ z = ( ( x ^ 2 ) + ( y ^ 2 ) ) ) <-> ( ( x gcd y ) = 1 /\ ( ( E ^ 2 ) + ( F ^ 2 ) ) = ( ( x ^ 2 ) + ( y ^ 2 ) ) ) ) ) |
193 |
192
|
2rexbidv |
|- ( z = ( ( E ^ 2 ) + ( F ^ 2 ) ) -> ( E. x e. ZZ E. y e. ZZ ( ( x gcd y ) = 1 /\ z = ( ( x ^ 2 ) + ( y ^ 2 ) ) ) <-> E. x e. ZZ E. y e. ZZ ( ( x gcd y ) = 1 /\ ( ( E ^ 2 ) + ( F ^ 2 ) ) = ( ( x ^ 2 ) + ( y ^ 2 ) ) ) ) ) |
194 |
190 193 2
|
elab2 |
|- ( ( ( E ^ 2 ) + ( F ^ 2 ) ) e. Y <-> E. x e. ZZ E. y e. ZZ ( ( x gcd y ) = 1 /\ ( ( E ^ 2 ) + ( F ^ 2 ) ) = ( ( x ^ 2 ) + ( y ^ 2 ) ) ) ) |
195 |
189 194
|
sylibr |
|- ( ph -> ( ( E ^ 2 ) + ( F ^ 2 ) ) e. Y ) |
196 |
164 195
|
sselid |
|- ( ph -> ( ( E ^ 2 ) + ( F ^ 2 ) ) e. NN ) |
197 |
196
|
nngt0d |
|- ( ph -> 0 < ( ( E ^ 2 ) + ( F ^ 2 ) ) ) |
198 |
17
|
nngt0d |
|- ( ph -> 0 < M ) |
199 |
160 161 197 198
|
divgt0d |
|- ( ph -> 0 < ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) ) |
200 |
|
elnnz |
|- ( ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) e. NN <-> ( ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) e. ZZ /\ 0 < ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) ) ) |
201 |
157 199 200
|
sylanbrc |
|- ( ph -> ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) e. NN ) |
202 |
|
prmnn |
|- ( p e. Prime -> p e. NN ) |
203 |
202
|
ad2antrl |
|- ( ( ph /\ ( p e. Prime /\ p || ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) ) ) -> p e. NN ) |
204 |
203
|
nnred |
|- ( ( ph /\ ( p e. Prime /\ p || ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) ) ) -> p e. RR ) |
205 |
157
|
adantr |
|- ( ( ph /\ ( p e. Prime /\ p || ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) ) ) -> ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) e. ZZ ) |
206 |
205
|
zred |
|- ( ( ph /\ ( p e. Prime /\ p || ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) ) ) -> ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) e. RR ) |
207 |
|
peano2zm |
|- ( M e. ZZ -> ( M - 1 ) e. ZZ ) |
208 |
19 207
|
syl |
|- ( ph -> ( M - 1 ) e. ZZ ) |
209 |
208
|
zred |
|- ( ph -> ( M - 1 ) e. RR ) |
210 |
209
|
adantr |
|- ( ( ph /\ ( p e. Prime /\ p || ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) ) ) -> ( M - 1 ) e. RR ) |
211 |
|
simprr |
|- ( ( ph /\ ( p e. Prime /\ p || ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) ) ) -> p || ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) ) |
212 |
|
prmz |
|- ( p e. Prime -> p e. ZZ ) |
213 |
212
|
ad2antrl |
|- ( ( ph /\ ( p e. Prime /\ p || ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) ) ) -> p e. ZZ ) |
214 |
201
|
adantr |
|- ( ( ph /\ ( p e. Prime /\ p || ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) ) ) -> ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) e. NN ) |
215 |
|
dvdsle |
|- ( ( p e. ZZ /\ ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) e. NN ) -> ( p || ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) -> p <_ ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) ) ) |
216 |
213 214 215
|
syl2anc |
|- ( ( ph /\ ( p e. Prime /\ p || ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) ) ) -> ( p || ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) -> p <_ ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) ) ) |
217 |
211 216
|
mpd |
|- ( ( ph /\ ( p e. Prime /\ p || ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) ) ) -> p <_ ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) ) |
218 |
|
zsqcl |
|- ( M e. ZZ -> ( M ^ 2 ) e. ZZ ) |
219 |
19 218
|
syl |
|- ( ph -> ( M ^ 2 ) e. ZZ ) |
220 |
219
|
zred |
|- ( ph -> ( M ^ 2 ) e. RR ) |
221 |
220
|
rehalfcld |
|- ( ph -> ( ( M ^ 2 ) / 2 ) e. RR ) |
222 |
24
|
zred |
|- ( ph -> ( C ^ 2 ) e. RR ) |
223 |
28
|
zred |
|- ( ph -> ( D ^ 2 ) e. RR ) |
224 |
222 223
|
readdcld |
|- ( ph -> ( ( C ^ 2 ) + ( D ^ 2 ) ) e. RR ) |
225 |
|
1red |
|- ( ph -> 1 e. RR ) |
226 |
50
|
nnsqcld |
|- ( ph -> ( ( C gcd D ) ^ 2 ) e. NN ) |
227 |
226
|
nnred |
|- ( ph -> ( ( C gcd D ) ^ 2 ) e. RR ) |
228 |
150
|
nn0ge0d |
|- ( ph -> 0 <_ ( ( E ^ 2 ) + ( F ^ 2 ) ) ) |
229 |
226
|
nnge1d |
|- ( ph -> 1 <_ ( ( C gcd D ) ^ 2 ) ) |
230 |
225 227 160 228 229
|
lemul1ad |
|- ( ph -> ( 1 x. ( ( E ^ 2 ) + ( F ^ 2 ) ) ) <_ ( ( ( C gcd D ) ^ 2 ) x. ( ( E ^ 2 ) + ( F ^ 2 ) ) ) ) |
231 |
150
|
nn0cnd |
|- ( ph -> ( ( E ^ 2 ) + ( F ^ 2 ) ) e. CC ) |
232 |
231
|
mulid2d |
|- ( ph -> ( 1 x. ( ( E ^ 2 ) + ( F ^ 2 ) ) ) = ( ( E ^ 2 ) + ( F ^ 2 ) ) ) |
233 |
230 232 93
|
3brtr3d |
|- ( ph -> ( ( E ^ 2 ) + ( F ^ 2 ) ) <_ ( ( C ^ 2 ) + ( D ^ 2 ) ) ) |
234 |
221
|
rehalfcld |
|- ( ph -> ( ( ( M ^ 2 ) / 2 ) / 2 ) e. RR ) |
235 |
7 17 11
|
4sqlem7 |
|- ( ph -> ( C ^ 2 ) <_ ( ( ( M ^ 2 ) / 2 ) / 2 ) ) |
236 |
8 17 12
|
4sqlem7 |
|- ( ph -> ( D ^ 2 ) <_ ( ( ( M ^ 2 ) / 2 ) / 2 ) ) |
237 |
222 223 234 234 235 236
|
le2addd |
|- ( ph -> ( ( C ^ 2 ) + ( D ^ 2 ) ) <_ ( ( ( ( M ^ 2 ) / 2 ) / 2 ) + ( ( ( M ^ 2 ) / 2 ) / 2 ) ) ) |
238 |
221
|
recnd |
|- ( ph -> ( ( M ^ 2 ) / 2 ) e. CC ) |
239 |
238
|
2halvesd |
|- ( ph -> ( ( ( ( M ^ 2 ) / 2 ) / 2 ) + ( ( ( M ^ 2 ) / 2 ) / 2 ) ) = ( ( M ^ 2 ) / 2 ) ) |
240 |
237 239
|
breqtrd |
|- ( ph -> ( ( C ^ 2 ) + ( D ^ 2 ) ) <_ ( ( M ^ 2 ) / 2 ) ) |
241 |
160 224 221 233 240
|
letrd |
|- ( ph -> ( ( E ^ 2 ) + ( F ^ 2 ) ) <_ ( ( M ^ 2 ) / 2 ) ) |
242 |
17
|
nnsqcld |
|- ( ph -> ( M ^ 2 ) e. NN ) |
243 |
242
|
nnrpd |
|- ( ph -> ( M ^ 2 ) e. RR+ ) |
244 |
|
rphalflt |
|- ( ( M ^ 2 ) e. RR+ -> ( ( M ^ 2 ) / 2 ) < ( M ^ 2 ) ) |
245 |
243 244
|
syl |
|- ( ph -> ( ( M ^ 2 ) / 2 ) < ( M ^ 2 ) ) |
246 |
160 221 220 241 245
|
lelttrd |
|- ( ph -> ( ( E ^ 2 ) + ( F ^ 2 ) ) < ( M ^ 2 ) ) |
247 |
19
|
zcnd |
|- ( ph -> M e. CC ) |
248 |
247
|
sqvald |
|- ( ph -> ( M ^ 2 ) = ( M x. M ) ) |
249 |
246 248
|
breqtrd |
|- ( ph -> ( ( E ^ 2 ) + ( F ^ 2 ) ) < ( M x. M ) ) |
250 |
|
ltdivmul |
|- ( ( ( ( E ^ 2 ) + ( F ^ 2 ) ) e. RR /\ M e. RR /\ ( M e. RR /\ 0 < M ) ) -> ( ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) < M <-> ( ( E ^ 2 ) + ( F ^ 2 ) ) < ( M x. M ) ) ) |
251 |
160 161 161 198 250
|
syl112anc |
|- ( ph -> ( ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) < M <-> ( ( E ^ 2 ) + ( F ^ 2 ) ) < ( M x. M ) ) ) |
252 |
249 251
|
mpbird |
|- ( ph -> ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) < M ) |
253 |
|
zltlem1 |
|- ( ( ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) e. ZZ /\ M e. ZZ ) -> ( ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) < M <-> ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) <_ ( M - 1 ) ) ) |
254 |
157 19 253
|
syl2anc |
|- ( ph -> ( ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) < M <-> ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) <_ ( M - 1 ) ) ) |
255 |
252 254
|
mpbid |
|- ( ph -> ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) <_ ( M - 1 ) ) |
256 |
255
|
adantr |
|- ( ( ph /\ ( p e. Prime /\ p || ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) ) ) -> ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) <_ ( M - 1 ) ) |
257 |
204 206 210 217 256
|
letrd |
|- ( ( ph /\ ( p e. Prime /\ p || ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) ) ) -> p <_ ( M - 1 ) ) |
258 |
208
|
adantr |
|- ( ( ph /\ ( p e. Prime /\ p || ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) ) ) -> ( M - 1 ) e. ZZ ) |
259 |
|
fznn |
|- ( ( M - 1 ) e. ZZ -> ( p e. ( 1 ... ( M - 1 ) ) <-> ( p e. NN /\ p <_ ( M - 1 ) ) ) ) |
260 |
258 259
|
syl |
|- ( ( ph /\ ( p e. Prime /\ p || ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) ) ) -> ( p e. ( 1 ... ( M - 1 ) ) <-> ( p e. NN /\ p <_ ( M - 1 ) ) ) ) |
261 |
203 257 260
|
mpbir2and |
|- ( ( ph /\ ( p e. Prime /\ p || ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) ) ) -> p e. ( 1 ... ( M - 1 ) ) ) |
262 |
195
|
adantr |
|- ( ( ph /\ ( p e. Prime /\ p || ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) ) ) -> ( ( E ^ 2 ) + ( F ^ 2 ) ) e. Y ) |
263 |
261 262
|
jca |
|- ( ( ph /\ ( p e. Prime /\ p || ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) ) ) -> ( p e. ( 1 ... ( M - 1 ) ) /\ ( ( E ^ 2 ) + ( F ^ 2 ) ) e. Y ) ) |
264 |
3
|
adantr |
|- ( ( ph /\ ( p e. Prime /\ p || ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) ) ) -> A. b e. ( 1 ... ( M - 1 ) ) A. a e. Y ( b || a -> b e. S ) ) |
265 |
151
|
adantr |
|- ( ( ph /\ ( p e. Prime /\ p || ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) ) ) -> ( ( E ^ 2 ) + ( F ^ 2 ) ) e. ZZ ) |
266 |
|
dvdsmul2 |
|- ( ( M e. ZZ /\ ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) e. ZZ ) -> ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) || ( M x. ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) ) ) |
267 |
19 157 266
|
syl2anc |
|- ( ph -> ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) || ( M x. ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) ) ) |
268 |
231 247 107
|
divcan2d |
|- ( ph -> ( M x. ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) ) = ( ( E ^ 2 ) + ( F ^ 2 ) ) ) |
269 |
267 268
|
breqtrd |
|- ( ph -> ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) || ( ( E ^ 2 ) + ( F ^ 2 ) ) ) |
270 |
269
|
adantr |
|- ( ( ph /\ ( p e. Prime /\ p || ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) ) ) -> ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) || ( ( E ^ 2 ) + ( F ^ 2 ) ) ) |
271 |
213 205 265 211 270
|
dvdstrd |
|- ( ( ph /\ ( p e. Prime /\ p || ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) ) ) -> p || ( ( E ^ 2 ) + ( F ^ 2 ) ) ) |
272 |
|
breq1 |
|- ( b = p -> ( b || a <-> p || a ) ) |
273 |
|
eleq1w |
|- ( b = p -> ( b e. S <-> p e. S ) ) |
274 |
272 273
|
imbi12d |
|- ( b = p -> ( ( b || a -> b e. S ) <-> ( p || a -> p e. S ) ) ) |
275 |
|
breq2 |
|- ( a = ( ( E ^ 2 ) + ( F ^ 2 ) ) -> ( p || a <-> p || ( ( E ^ 2 ) + ( F ^ 2 ) ) ) ) |
276 |
275
|
imbi1d |
|- ( a = ( ( E ^ 2 ) + ( F ^ 2 ) ) -> ( ( p || a -> p e. S ) <-> ( p || ( ( E ^ 2 ) + ( F ^ 2 ) ) -> p e. S ) ) ) |
277 |
274 276
|
rspc2v |
|- ( ( p e. ( 1 ... ( M - 1 ) ) /\ ( ( E ^ 2 ) + ( F ^ 2 ) ) e. Y ) -> ( A. b e. ( 1 ... ( M - 1 ) ) A. a e. Y ( b || a -> b e. S ) -> ( p || ( ( E ^ 2 ) + ( F ^ 2 ) ) -> p e. S ) ) ) |
278 |
263 264 271 277
|
syl3c |
|- ( ( ph /\ ( p e. Prime /\ p || ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) ) ) -> p e. S ) |
279 |
278
|
expr |
|- ( ( ph /\ p e. Prime ) -> ( p || ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) -> p e. S ) ) |
280 |
279
|
ralrimiva |
|- ( ph -> A. p e. Prime ( p || ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) -> p e. S ) ) |
281 |
|
inss1 |
|- ( S i^i NN ) C_ S |
282 |
162 281
|
sstri |
|- Y C_ S |
283 |
282 195
|
sselid |
|- ( ph -> ( ( E ^ 2 ) + ( F ^ 2 ) ) e. S ) |
284 |
268 283
|
eqeltrd |
|- ( ph -> ( M x. ( ( ( E ^ 2 ) + ( F ^ 2 ) ) / M ) ) e. S ) |
285 |
1 17 201 280 284
|
2sqlem6 |
|- ( ph -> M e. S ) |