Step |
Hyp |
Ref |
Expression |
1 |
|
2sq.1 |
|- S = ran ( w e. Z[i] |-> ( ( abs ` w ) ^ 2 ) ) |
2 |
|
2sqlem7.2 |
|- Y = { z | E. x e. ZZ E. y e. ZZ ( ( x gcd y ) = 1 /\ z = ( ( x ^ 2 ) + ( y ^ 2 ) ) ) } |
3 |
|
2sqlem9.5 |
|- ( ph -> A. b e. ( 1 ... ( M - 1 ) ) A. a e. Y ( b || a -> b e. S ) ) |
4 |
|
2sqlem9.7 |
|- ( ph -> M || N ) |
5 |
|
2sqlem9.6 |
|- ( ph -> M e. NN ) |
6 |
|
2sqlem9.4 |
|- ( ph -> N e. Y ) |
7 |
|
eqeq1 |
|- ( z = N -> ( z = ( ( x ^ 2 ) + ( y ^ 2 ) ) <-> N = ( ( x ^ 2 ) + ( y ^ 2 ) ) ) ) |
8 |
7
|
anbi2d |
|- ( z = N -> ( ( ( x gcd y ) = 1 /\ z = ( ( x ^ 2 ) + ( y ^ 2 ) ) ) <-> ( ( x gcd y ) = 1 /\ N = ( ( x ^ 2 ) + ( y ^ 2 ) ) ) ) ) |
9 |
8
|
2rexbidv |
|- ( z = N -> ( E. x e. ZZ E. y e. ZZ ( ( x gcd y ) = 1 /\ z = ( ( x ^ 2 ) + ( y ^ 2 ) ) ) <-> E. x e. ZZ E. y e. ZZ ( ( x gcd y ) = 1 /\ N = ( ( x ^ 2 ) + ( y ^ 2 ) ) ) ) ) |
10 |
|
oveq1 |
|- ( x = u -> ( x gcd y ) = ( u gcd y ) ) |
11 |
10
|
eqeq1d |
|- ( x = u -> ( ( x gcd y ) = 1 <-> ( u gcd y ) = 1 ) ) |
12 |
|
oveq1 |
|- ( x = u -> ( x ^ 2 ) = ( u ^ 2 ) ) |
13 |
12
|
oveq1d |
|- ( x = u -> ( ( x ^ 2 ) + ( y ^ 2 ) ) = ( ( u ^ 2 ) + ( y ^ 2 ) ) ) |
14 |
13
|
eqeq2d |
|- ( x = u -> ( N = ( ( x ^ 2 ) + ( y ^ 2 ) ) <-> N = ( ( u ^ 2 ) + ( y ^ 2 ) ) ) ) |
15 |
11 14
|
anbi12d |
|- ( x = u -> ( ( ( x gcd y ) = 1 /\ N = ( ( x ^ 2 ) + ( y ^ 2 ) ) ) <-> ( ( u gcd y ) = 1 /\ N = ( ( u ^ 2 ) + ( y ^ 2 ) ) ) ) ) |
16 |
|
oveq2 |
|- ( y = v -> ( u gcd y ) = ( u gcd v ) ) |
17 |
16
|
eqeq1d |
|- ( y = v -> ( ( u gcd y ) = 1 <-> ( u gcd v ) = 1 ) ) |
18 |
|
oveq1 |
|- ( y = v -> ( y ^ 2 ) = ( v ^ 2 ) ) |
19 |
18
|
oveq2d |
|- ( y = v -> ( ( u ^ 2 ) + ( y ^ 2 ) ) = ( ( u ^ 2 ) + ( v ^ 2 ) ) ) |
20 |
19
|
eqeq2d |
|- ( y = v -> ( N = ( ( u ^ 2 ) + ( y ^ 2 ) ) <-> N = ( ( u ^ 2 ) + ( v ^ 2 ) ) ) ) |
21 |
17 20
|
anbi12d |
|- ( y = v -> ( ( ( u gcd y ) = 1 /\ N = ( ( u ^ 2 ) + ( y ^ 2 ) ) ) <-> ( ( u gcd v ) = 1 /\ N = ( ( u ^ 2 ) + ( v ^ 2 ) ) ) ) ) |
22 |
15 21
|
cbvrex2vw |
|- ( E. x e. ZZ E. y e. ZZ ( ( x gcd y ) = 1 /\ N = ( ( x ^ 2 ) + ( y ^ 2 ) ) ) <-> E. u e. ZZ E. v e. ZZ ( ( u gcd v ) = 1 /\ N = ( ( u ^ 2 ) + ( v ^ 2 ) ) ) ) |
23 |
9 22
|
bitrdi |
|- ( z = N -> ( E. x e. ZZ E. y e. ZZ ( ( x gcd y ) = 1 /\ z = ( ( x ^ 2 ) + ( y ^ 2 ) ) ) <-> E. u e. ZZ E. v e. ZZ ( ( u gcd v ) = 1 /\ N = ( ( u ^ 2 ) + ( v ^ 2 ) ) ) ) ) |
24 |
23 2
|
elab2g |
|- ( N e. Y -> ( N e. Y <-> E. u e. ZZ E. v e. ZZ ( ( u gcd v ) = 1 /\ N = ( ( u ^ 2 ) + ( v ^ 2 ) ) ) ) ) |
25 |
24
|
ibi |
|- ( N e. Y -> E. u e. ZZ E. v e. ZZ ( ( u gcd v ) = 1 /\ N = ( ( u ^ 2 ) + ( v ^ 2 ) ) ) ) |
26 |
6 25
|
syl |
|- ( ph -> E. u e. ZZ E. v e. ZZ ( ( u gcd v ) = 1 /\ N = ( ( u ^ 2 ) + ( v ^ 2 ) ) ) ) |
27 |
|
simpr |
|- ( ( ( ( ph /\ ( u e. ZZ /\ v e. ZZ ) ) /\ ( ( u gcd v ) = 1 /\ N = ( ( u ^ 2 ) + ( v ^ 2 ) ) ) ) /\ M = 1 ) -> M = 1 ) |
28 |
|
1z |
|- 1 e. ZZ |
29 |
|
zgz |
|- ( 1 e. ZZ -> 1 e. Z[i] ) |
30 |
28 29
|
ax-mp |
|- 1 e. Z[i] |
31 |
|
sq1 |
|- ( 1 ^ 2 ) = 1 |
32 |
31
|
eqcomi |
|- 1 = ( 1 ^ 2 ) |
33 |
|
fveq2 |
|- ( x = 1 -> ( abs ` x ) = ( abs ` 1 ) ) |
34 |
|
abs1 |
|- ( abs ` 1 ) = 1 |
35 |
33 34
|
eqtrdi |
|- ( x = 1 -> ( abs ` x ) = 1 ) |
36 |
35
|
oveq1d |
|- ( x = 1 -> ( ( abs ` x ) ^ 2 ) = ( 1 ^ 2 ) ) |
37 |
36
|
rspceeqv |
|- ( ( 1 e. Z[i] /\ 1 = ( 1 ^ 2 ) ) -> E. x e. Z[i] 1 = ( ( abs ` x ) ^ 2 ) ) |
38 |
30 32 37
|
mp2an |
|- E. x e. Z[i] 1 = ( ( abs ` x ) ^ 2 ) |
39 |
1
|
2sqlem1 |
|- ( 1 e. S <-> E. x e. Z[i] 1 = ( ( abs ` x ) ^ 2 ) ) |
40 |
38 39
|
mpbir |
|- 1 e. S |
41 |
27 40
|
eqeltrdi |
|- ( ( ( ( ph /\ ( u e. ZZ /\ v e. ZZ ) ) /\ ( ( u gcd v ) = 1 /\ N = ( ( u ^ 2 ) + ( v ^ 2 ) ) ) ) /\ M = 1 ) -> M e. S ) |
42 |
3
|
ad2antrr |
|- ( ( ( ph /\ ( u e. ZZ /\ v e. ZZ ) ) /\ ( ( ( u gcd v ) = 1 /\ N = ( ( u ^ 2 ) + ( v ^ 2 ) ) ) /\ M =/= 1 ) ) -> A. b e. ( 1 ... ( M - 1 ) ) A. a e. Y ( b || a -> b e. S ) ) |
43 |
4
|
ad2antrr |
|- ( ( ( ph /\ ( u e. ZZ /\ v e. ZZ ) ) /\ ( ( ( u gcd v ) = 1 /\ N = ( ( u ^ 2 ) + ( v ^ 2 ) ) ) /\ M =/= 1 ) ) -> M || N ) |
44 |
1 2
|
2sqlem7 |
|- Y C_ ( S i^i NN ) |
45 |
|
inss2 |
|- ( S i^i NN ) C_ NN |
46 |
44 45
|
sstri |
|- Y C_ NN |
47 |
46 6
|
sselid |
|- ( ph -> N e. NN ) |
48 |
47
|
ad2antrr |
|- ( ( ( ph /\ ( u e. ZZ /\ v e. ZZ ) ) /\ ( ( ( u gcd v ) = 1 /\ N = ( ( u ^ 2 ) + ( v ^ 2 ) ) ) /\ M =/= 1 ) ) -> N e. NN ) |
49 |
5
|
ad2antrr |
|- ( ( ( ph /\ ( u e. ZZ /\ v e. ZZ ) ) /\ ( ( ( u gcd v ) = 1 /\ N = ( ( u ^ 2 ) + ( v ^ 2 ) ) ) /\ M =/= 1 ) ) -> M e. NN ) |
50 |
|
simprr |
|- ( ( ( ph /\ ( u e. ZZ /\ v e. ZZ ) ) /\ ( ( ( u gcd v ) = 1 /\ N = ( ( u ^ 2 ) + ( v ^ 2 ) ) ) /\ M =/= 1 ) ) -> M =/= 1 ) |
51 |
|
eluz2b3 |
|- ( M e. ( ZZ>= ` 2 ) <-> ( M e. NN /\ M =/= 1 ) ) |
52 |
49 50 51
|
sylanbrc |
|- ( ( ( ph /\ ( u e. ZZ /\ v e. ZZ ) ) /\ ( ( ( u gcd v ) = 1 /\ N = ( ( u ^ 2 ) + ( v ^ 2 ) ) ) /\ M =/= 1 ) ) -> M e. ( ZZ>= ` 2 ) ) |
53 |
|
simplrl |
|- ( ( ( ph /\ ( u e. ZZ /\ v e. ZZ ) ) /\ ( ( ( u gcd v ) = 1 /\ N = ( ( u ^ 2 ) + ( v ^ 2 ) ) ) /\ M =/= 1 ) ) -> u e. ZZ ) |
54 |
|
simplrr |
|- ( ( ( ph /\ ( u e. ZZ /\ v e. ZZ ) ) /\ ( ( ( u gcd v ) = 1 /\ N = ( ( u ^ 2 ) + ( v ^ 2 ) ) ) /\ M =/= 1 ) ) -> v e. ZZ ) |
55 |
|
simprll |
|- ( ( ( ph /\ ( u e. ZZ /\ v e. ZZ ) ) /\ ( ( ( u gcd v ) = 1 /\ N = ( ( u ^ 2 ) + ( v ^ 2 ) ) ) /\ M =/= 1 ) ) -> ( u gcd v ) = 1 ) |
56 |
|
simprlr |
|- ( ( ( ph /\ ( u e. ZZ /\ v e. ZZ ) ) /\ ( ( ( u gcd v ) = 1 /\ N = ( ( u ^ 2 ) + ( v ^ 2 ) ) ) /\ M =/= 1 ) ) -> N = ( ( u ^ 2 ) + ( v ^ 2 ) ) ) |
57 |
|
eqid |
|- ( ( ( u + ( M / 2 ) ) mod M ) - ( M / 2 ) ) = ( ( ( u + ( M / 2 ) ) mod M ) - ( M / 2 ) ) |
58 |
|
eqid |
|- ( ( ( v + ( M / 2 ) ) mod M ) - ( M / 2 ) ) = ( ( ( v + ( M / 2 ) ) mod M ) - ( M / 2 ) ) |
59 |
|
eqid |
|- ( ( ( ( u + ( M / 2 ) ) mod M ) - ( M / 2 ) ) / ( ( ( ( u + ( M / 2 ) ) mod M ) - ( M / 2 ) ) gcd ( ( ( v + ( M / 2 ) ) mod M ) - ( M / 2 ) ) ) ) = ( ( ( ( u + ( M / 2 ) ) mod M ) - ( M / 2 ) ) / ( ( ( ( u + ( M / 2 ) ) mod M ) - ( M / 2 ) ) gcd ( ( ( v + ( M / 2 ) ) mod M ) - ( M / 2 ) ) ) ) |
60 |
|
eqid |
|- ( ( ( ( v + ( M / 2 ) ) mod M ) - ( M / 2 ) ) / ( ( ( ( u + ( M / 2 ) ) mod M ) - ( M / 2 ) ) gcd ( ( ( v + ( M / 2 ) ) mod M ) - ( M / 2 ) ) ) ) = ( ( ( ( v + ( M / 2 ) ) mod M ) - ( M / 2 ) ) / ( ( ( ( u + ( M / 2 ) ) mod M ) - ( M / 2 ) ) gcd ( ( ( v + ( M / 2 ) ) mod M ) - ( M / 2 ) ) ) ) |
61 |
1 2 42 43 48 52 53 54 55 56 57 58 59 60
|
2sqlem8 |
|- ( ( ( ph /\ ( u e. ZZ /\ v e. ZZ ) ) /\ ( ( ( u gcd v ) = 1 /\ N = ( ( u ^ 2 ) + ( v ^ 2 ) ) ) /\ M =/= 1 ) ) -> M e. S ) |
62 |
61
|
anassrs |
|- ( ( ( ( ph /\ ( u e. ZZ /\ v e. ZZ ) ) /\ ( ( u gcd v ) = 1 /\ N = ( ( u ^ 2 ) + ( v ^ 2 ) ) ) ) /\ M =/= 1 ) -> M e. S ) |
63 |
41 62
|
pm2.61dane |
|- ( ( ( ph /\ ( u e. ZZ /\ v e. ZZ ) ) /\ ( ( u gcd v ) = 1 /\ N = ( ( u ^ 2 ) + ( v ^ 2 ) ) ) ) -> M e. S ) |
64 |
63
|
ex |
|- ( ( ph /\ ( u e. ZZ /\ v e. ZZ ) ) -> ( ( ( u gcd v ) = 1 /\ N = ( ( u ^ 2 ) + ( v ^ 2 ) ) ) -> M e. S ) ) |
65 |
64
|
rexlimdvva |
|- ( ph -> ( E. u e. ZZ E. v e. ZZ ( ( u gcd v ) = 1 /\ N = ( ( u ^ 2 ) + ( v ^ 2 ) ) ) -> M e. S ) ) |
66 |
26 65
|
mpd |
|- ( ph -> M e. S ) |