Step |
Hyp |
Ref |
Expression |
1 |
|
2sqmod.1 |
|- ( ph -> P e. Prime ) |
2 |
|
2sqmod.2 |
|- ( ph -> A e. NN0 ) |
3 |
|
2sqmod.3 |
|- ( ph -> B e. NN0 ) |
4 |
|
2sqmod.4 |
|- ( ph -> C e. NN0 ) |
5 |
|
2sqmod.5 |
|- ( ph -> D e. NN0 ) |
6 |
|
2sqmod.6 |
|- ( ph -> A <_ B ) |
7 |
|
2sqmod.7 |
|- ( ph -> C <_ D ) |
8 |
|
2sqmod.8 |
|- ( ph -> ( ( A ^ 2 ) + ( B ^ 2 ) ) = P ) |
9 |
|
2sqmod.9 |
|- ( ph -> ( ( C ^ 2 ) + ( D ^ 2 ) ) = P ) |
10 |
6
|
adantr |
|- ( ( ph /\ P || ( ( A x. D ) + ( C x. B ) ) ) -> A <_ B ) |
11 |
4
|
nn0red |
|- ( ph -> C e. RR ) |
12 |
11
|
adantr |
|- ( ( ph /\ P || ( ( A x. D ) + ( C x. B ) ) ) -> C e. RR ) |
13 |
3
|
nn0red |
|- ( ph -> B e. RR ) |
14 |
13
|
adantr |
|- ( ( ph /\ P || ( ( A x. D ) + ( C x. B ) ) ) -> B e. RR ) |
15 |
4
|
nn0ge0d |
|- ( ph -> 0 <_ C ) |
16 |
15
|
adantr |
|- ( ( ph /\ P || ( ( A x. D ) + ( C x. B ) ) ) -> 0 <_ C ) |
17 |
3
|
nn0ge0d |
|- ( ph -> 0 <_ B ) |
18 |
17
|
adantr |
|- ( ( ph /\ P || ( ( A x. D ) + ( C x. B ) ) ) -> 0 <_ B ) |
19 |
4
|
nn0cnd |
|- ( ph -> C e. CC ) |
20 |
19
|
sqcld |
|- ( ph -> ( C ^ 2 ) e. CC ) |
21 |
20
|
adantr |
|- ( ( ph /\ P || ( ( A x. D ) + ( C x. B ) ) ) -> ( C ^ 2 ) e. CC ) |
22 |
3
|
nn0cnd |
|- ( ph -> B e. CC ) |
23 |
22
|
sqcld |
|- ( ph -> ( B ^ 2 ) e. CC ) |
24 |
23
|
adantr |
|- ( ( ph /\ P || ( ( A x. D ) + ( C x. B ) ) ) -> ( B ^ 2 ) e. CC ) |
25 |
2
|
nn0cnd |
|- ( ph -> A e. CC ) |
26 |
25
|
sqcld |
|- ( ph -> ( A ^ 2 ) e. CC ) |
27 |
5
|
nn0cnd |
|- ( ph -> D e. CC ) |
28 |
27
|
sqcld |
|- ( ph -> ( D ^ 2 ) e. CC ) |
29 |
8 9
|
eqtr4d |
|- ( ph -> ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( ( C ^ 2 ) + ( D ^ 2 ) ) ) |
30 |
26 23 20 28 29
|
subaddeqd |
|- ( ph -> ( ( A ^ 2 ) - ( D ^ 2 ) ) = ( ( C ^ 2 ) - ( B ^ 2 ) ) ) |
31 |
30
|
adantr |
|- ( ( ph /\ P || ( ( A x. D ) + ( C x. B ) ) ) -> ( ( A ^ 2 ) - ( D ^ 2 ) ) = ( ( C ^ 2 ) - ( B ^ 2 ) ) ) |
32 |
2
|
nn0zd |
|- ( ph -> A e. ZZ ) |
33 |
4
|
nn0zd |
|- ( ph -> C e. ZZ ) |
34 |
|
dvdsmul1 |
|- ( ( A e. ZZ /\ C e. ZZ ) -> A || ( A x. C ) ) |
35 |
32 33 34
|
syl2anc |
|- ( ph -> A || ( A x. C ) ) |
36 |
35
|
adantr |
|- ( ( ph /\ P || ( ( A x. D ) + ( C x. B ) ) ) -> A || ( A x. C ) ) |
37 |
25 19
|
mulcld |
|- ( ph -> ( A x. C ) e. CC ) |
38 |
37
|
adantr |
|- ( ( ph /\ P || ( ( A x. D ) + ( C x. B ) ) ) -> ( A x. C ) e. CC ) |
39 |
22 27
|
mulcld |
|- ( ph -> ( B x. D ) e. CC ) |
40 |
39
|
adantr |
|- ( ( ph /\ P || ( ( A x. D ) + ( C x. B ) ) ) -> ( B x. D ) e. CC ) |
41 |
2
|
nn0red |
|- ( ph -> A e. RR ) |
42 |
41 11
|
remulcld |
|- ( ph -> ( A x. C ) e. RR ) |
43 |
5
|
nn0red |
|- ( ph -> D e. RR ) |
44 |
13 43
|
remulcld |
|- ( ph -> ( B x. D ) e. RR ) |
45 |
42 44
|
resubcld |
|- ( ph -> ( ( A x. C ) - ( B x. D ) ) e. RR ) |
46 |
45
|
recnd |
|- ( ph -> ( ( A x. C ) - ( B x. D ) ) e. CC ) |
47 |
46
|
adantr |
|- ( ( ph /\ P || ( ( A x. D ) + ( C x. B ) ) ) -> ( ( A x. C ) - ( B x. D ) ) e. CC ) |
48 |
45
|
sqge0d |
|- ( ph -> 0 <_ ( ( ( A x. C ) - ( B x. D ) ) ^ 2 ) ) |
49 |
3
|
nn0zd |
|- ( ph -> B e. ZZ ) |
50 |
1 32 49 8
|
2sqn0 |
|- ( ph -> A =/= 0 ) |
51 |
|
elnnne0 |
|- ( A e. NN <-> ( A e. NN0 /\ A =/= 0 ) ) |
52 |
2 50 51
|
sylanbrc |
|- ( ph -> A e. NN ) |
53 |
5
|
nn0zd |
|- ( ph -> D e. ZZ ) |
54 |
28 20
|
addcomd |
|- ( ph -> ( ( D ^ 2 ) + ( C ^ 2 ) ) = ( ( C ^ 2 ) + ( D ^ 2 ) ) ) |
55 |
54 9
|
eqtrd |
|- ( ph -> ( ( D ^ 2 ) + ( C ^ 2 ) ) = P ) |
56 |
1 53 33 55
|
2sqn0 |
|- ( ph -> D =/= 0 ) |
57 |
|
elnnne0 |
|- ( D e. NN <-> ( D e. NN0 /\ D =/= 0 ) ) |
58 |
5 56 57
|
sylanbrc |
|- ( ph -> D e. NN ) |
59 |
52 58
|
nnmulcld |
|- ( ph -> ( A x. D ) e. NN ) |
60 |
1 33 53 9
|
2sqn0 |
|- ( ph -> C =/= 0 ) |
61 |
|
elnnne0 |
|- ( C e. NN <-> ( C e. NN0 /\ C =/= 0 ) ) |
62 |
4 60 61
|
sylanbrc |
|- ( ph -> C e. NN ) |
63 |
23 26
|
addcomd |
|- ( ph -> ( ( B ^ 2 ) + ( A ^ 2 ) ) = ( ( A ^ 2 ) + ( B ^ 2 ) ) ) |
64 |
63 8
|
eqtrd |
|- ( ph -> ( ( B ^ 2 ) + ( A ^ 2 ) ) = P ) |
65 |
1 49 32 64
|
2sqn0 |
|- ( ph -> B =/= 0 ) |
66 |
|
elnnne0 |
|- ( B e. NN <-> ( B e. NN0 /\ B =/= 0 ) ) |
67 |
3 65 66
|
sylanbrc |
|- ( ph -> B e. NN ) |
68 |
62 67
|
nnmulcld |
|- ( ph -> ( C x. B ) e. NN ) |
69 |
59 68
|
nnaddcld |
|- ( ph -> ( ( A x. D ) + ( C x. B ) ) e. NN ) |
70 |
69
|
nnsqcld |
|- ( ph -> ( ( ( A x. D ) + ( C x. B ) ) ^ 2 ) e. NN ) |
71 |
70
|
nnred |
|- ( ph -> ( ( ( A x. D ) + ( C x. B ) ) ^ 2 ) e. RR ) |
72 |
45
|
resqcld |
|- ( ph -> ( ( ( A x. C ) - ( B x. D ) ) ^ 2 ) e. RR ) |
73 |
71 72
|
addge02d |
|- ( ph -> ( 0 <_ ( ( ( A x. C ) - ( B x. D ) ) ^ 2 ) <-> ( ( ( A x. D ) + ( C x. B ) ) ^ 2 ) <_ ( ( ( ( A x. C ) - ( B x. D ) ) ^ 2 ) + ( ( ( A x. D ) + ( C x. B ) ) ^ 2 ) ) ) ) |
74 |
48 73
|
mpbid |
|- ( ph -> ( ( ( A x. D ) + ( C x. B ) ) ^ 2 ) <_ ( ( ( ( A x. C ) - ( B x. D ) ) ^ 2 ) + ( ( ( A x. D ) + ( C x. B ) ) ^ 2 ) ) ) |
75 |
8 9
|
oveq12d |
|- ( ph -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) x. ( ( C ^ 2 ) + ( D ^ 2 ) ) ) = ( P x. P ) ) |
76 |
|
bhmafibid1 |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) x. ( ( C ^ 2 ) + ( D ^ 2 ) ) ) = ( ( ( ( A x. C ) - ( B x. D ) ) ^ 2 ) + ( ( ( A x. D ) + ( B x. C ) ) ^ 2 ) ) ) |
77 |
41 13 11 43 76
|
syl22anc |
|- ( ph -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) x. ( ( C ^ 2 ) + ( D ^ 2 ) ) ) = ( ( ( ( A x. C ) - ( B x. D ) ) ^ 2 ) + ( ( ( A x. D ) + ( B x. C ) ) ^ 2 ) ) ) |
78 |
75 77
|
eqtr3d |
|- ( ph -> ( P x. P ) = ( ( ( ( A x. C ) - ( B x. D ) ) ^ 2 ) + ( ( ( A x. D ) + ( B x. C ) ) ^ 2 ) ) ) |
79 |
|
prmz |
|- ( P e. Prime -> P e. ZZ ) |
80 |
1 79
|
syl |
|- ( ph -> P e. ZZ ) |
81 |
80
|
zcnd |
|- ( ph -> P e. CC ) |
82 |
81
|
sqvald |
|- ( ph -> ( P ^ 2 ) = ( P x. P ) ) |
83 |
19 22
|
mulcomd |
|- ( ph -> ( C x. B ) = ( B x. C ) ) |
84 |
83
|
oveq2d |
|- ( ph -> ( ( A x. D ) + ( C x. B ) ) = ( ( A x. D ) + ( B x. C ) ) ) |
85 |
84
|
oveq1d |
|- ( ph -> ( ( ( A x. D ) + ( C x. B ) ) ^ 2 ) = ( ( ( A x. D ) + ( B x. C ) ) ^ 2 ) ) |
86 |
85
|
oveq2d |
|- ( ph -> ( ( ( ( A x. C ) - ( B x. D ) ) ^ 2 ) + ( ( ( A x. D ) + ( C x. B ) ) ^ 2 ) ) = ( ( ( ( A x. C ) - ( B x. D ) ) ^ 2 ) + ( ( ( A x. D ) + ( B x. C ) ) ^ 2 ) ) ) |
87 |
78 82 86
|
3eqtr4d |
|- ( ph -> ( P ^ 2 ) = ( ( ( ( A x. C ) - ( B x. D ) ) ^ 2 ) + ( ( ( A x. D ) + ( C x. B ) ) ^ 2 ) ) ) |
88 |
74 87
|
breqtrrd |
|- ( ph -> ( ( ( A x. D ) + ( C x. B ) ) ^ 2 ) <_ ( P ^ 2 ) ) |
89 |
88
|
adantr |
|- ( ( ph /\ P || ( ( A x. D ) + ( C x. B ) ) ) -> ( ( ( A x. D ) + ( C x. B ) ) ^ 2 ) <_ ( P ^ 2 ) ) |
90 |
32 53
|
zmulcld |
|- ( ph -> ( A x. D ) e. ZZ ) |
91 |
33 49
|
zmulcld |
|- ( ph -> ( C x. B ) e. ZZ ) |
92 |
90 91
|
zaddcld |
|- ( ph -> ( ( A x. D ) + ( C x. B ) ) e. ZZ ) |
93 |
|
dvdssqim |
|- ( ( P e. ZZ /\ ( ( A x. D ) + ( C x. B ) ) e. ZZ ) -> ( P || ( ( A x. D ) + ( C x. B ) ) -> ( P ^ 2 ) || ( ( ( A x. D ) + ( C x. B ) ) ^ 2 ) ) ) |
94 |
80 92 93
|
syl2anc |
|- ( ph -> ( P || ( ( A x. D ) + ( C x. B ) ) -> ( P ^ 2 ) || ( ( ( A x. D ) + ( C x. B ) ) ^ 2 ) ) ) |
95 |
|
zsqcl |
|- ( P e. ZZ -> ( P ^ 2 ) e. ZZ ) |
96 |
80 95
|
syl |
|- ( ph -> ( P ^ 2 ) e. ZZ ) |
97 |
|
dvdsle |
|- ( ( ( P ^ 2 ) e. ZZ /\ ( ( ( A x. D ) + ( C x. B ) ) ^ 2 ) e. NN ) -> ( ( P ^ 2 ) || ( ( ( A x. D ) + ( C x. B ) ) ^ 2 ) -> ( P ^ 2 ) <_ ( ( ( A x. D ) + ( C x. B ) ) ^ 2 ) ) ) |
98 |
96 70 97
|
syl2anc |
|- ( ph -> ( ( P ^ 2 ) || ( ( ( A x. D ) + ( C x. B ) ) ^ 2 ) -> ( P ^ 2 ) <_ ( ( ( A x. D ) + ( C x. B ) ) ^ 2 ) ) ) |
99 |
94 98
|
syld |
|- ( ph -> ( P || ( ( A x. D ) + ( C x. B ) ) -> ( P ^ 2 ) <_ ( ( ( A x. D ) + ( C x. B ) ) ^ 2 ) ) ) |
100 |
99
|
imp |
|- ( ( ph /\ P || ( ( A x. D ) + ( C x. B ) ) ) -> ( P ^ 2 ) <_ ( ( ( A x. D ) + ( C x. B ) ) ^ 2 ) ) |
101 |
96
|
zred |
|- ( ph -> ( P ^ 2 ) e. RR ) |
102 |
71 101
|
letri3d |
|- ( ph -> ( ( ( ( A x. D ) + ( C x. B ) ) ^ 2 ) = ( P ^ 2 ) <-> ( ( ( ( A x. D ) + ( C x. B ) ) ^ 2 ) <_ ( P ^ 2 ) /\ ( P ^ 2 ) <_ ( ( ( A x. D ) + ( C x. B ) ) ^ 2 ) ) ) ) |
103 |
102
|
adantr |
|- ( ( ph /\ P || ( ( A x. D ) + ( C x. B ) ) ) -> ( ( ( ( A x. D ) + ( C x. B ) ) ^ 2 ) = ( P ^ 2 ) <-> ( ( ( ( A x. D ) + ( C x. B ) ) ^ 2 ) <_ ( P ^ 2 ) /\ ( P ^ 2 ) <_ ( ( ( A x. D ) + ( C x. B ) ) ^ 2 ) ) ) ) |
104 |
89 100 103
|
mpbir2and |
|- ( ( ph /\ P || ( ( A x. D ) + ( C x. B ) ) ) -> ( ( ( A x. D ) + ( C x. B ) ) ^ 2 ) = ( P ^ 2 ) ) |
105 |
87
|
adantr |
|- ( ( ph /\ P || ( ( A x. D ) + ( C x. B ) ) ) -> ( P ^ 2 ) = ( ( ( ( A x. C ) - ( B x. D ) ) ^ 2 ) + ( ( ( A x. D ) + ( C x. B ) ) ^ 2 ) ) ) |
106 |
104 105
|
eqtr2d |
|- ( ( ph /\ P || ( ( A x. D ) + ( C x. B ) ) ) -> ( ( ( ( A x. C ) - ( B x. D ) ) ^ 2 ) + ( ( ( A x. D ) + ( C x. B ) ) ^ 2 ) ) = ( ( ( A x. D ) + ( C x. B ) ) ^ 2 ) ) |
107 |
71
|
recnd |
|- ( ph -> ( ( ( A x. D ) + ( C x. B ) ) ^ 2 ) e. CC ) |
108 |
72
|
recnd |
|- ( ph -> ( ( ( A x. C ) - ( B x. D ) ) ^ 2 ) e. CC ) |
109 |
107 107 108
|
subadd2d |
|- ( ph -> ( ( ( ( ( A x. D ) + ( C x. B ) ) ^ 2 ) - ( ( ( A x. D ) + ( C x. B ) ) ^ 2 ) ) = ( ( ( A x. C ) - ( B x. D ) ) ^ 2 ) <-> ( ( ( ( A x. C ) - ( B x. D ) ) ^ 2 ) + ( ( ( A x. D ) + ( C x. B ) ) ^ 2 ) ) = ( ( ( A x. D ) + ( C x. B ) ) ^ 2 ) ) ) |
110 |
109
|
adantr |
|- ( ( ph /\ P || ( ( A x. D ) + ( C x. B ) ) ) -> ( ( ( ( ( A x. D ) + ( C x. B ) ) ^ 2 ) - ( ( ( A x. D ) + ( C x. B ) ) ^ 2 ) ) = ( ( ( A x. C ) - ( B x. D ) ) ^ 2 ) <-> ( ( ( ( A x. C ) - ( B x. D ) ) ^ 2 ) + ( ( ( A x. D ) + ( C x. B ) ) ^ 2 ) ) = ( ( ( A x. D ) + ( C x. B ) ) ^ 2 ) ) ) |
111 |
106 110
|
mpbird |
|- ( ( ph /\ P || ( ( A x. D ) + ( C x. B ) ) ) -> ( ( ( ( A x. D ) + ( C x. B ) ) ^ 2 ) - ( ( ( A x. D ) + ( C x. B ) ) ^ 2 ) ) = ( ( ( A x. C ) - ( B x. D ) ) ^ 2 ) ) |
112 |
107
|
subidd |
|- ( ph -> ( ( ( ( A x. D ) + ( C x. B ) ) ^ 2 ) - ( ( ( A x. D ) + ( C x. B ) ) ^ 2 ) ) = 0 ) |
113 |
112
|
adantr |
|- ( ( ph /\ P || ( ( A x. D ) + ( C x. B ) ) ) -> ( ( ( ( A x. D ) + ( C x. B ) ) ^ 2 ) - ( ( ( A x. D ) + ( C x. B ) ) ^ 2 ) ) = 0 ) |
114 |
111 113
|
eqtr3d |
|- ( ( ph /\ P || ( ( A x. D ) + ( C x. B ) ) ) -> ( ( ( A x. C ) - ( B x. D ) ) ^ 2 ) = 0 ) |
115 |
47 114
|
sqeq0d |
|- ( ( ph /\ P || ( ( A x. D ) + ( C x. B ) ) ) -> ( ( A x. C ) - ( B x. D ) ) = 0 ) |
116 |
38 40 115
|
subeq0d |
|- ( ( ph /\ P || ( ( A x. D ) + ( C x. B ) ) ) -> ( A x. C ) = ( B x. D ) ) |
117 |
36 116
|
breqtrd |
|- ( ( ph /\ P || ( ( A x. D ) + ( C x. B ) ) ) -> A || ( B x. D ) ) |
118 |
1 32 49 8
|
2sqcoprm |
|- ( ph -> ( A gcd B ) = 1 ) |
119 |
118
|
adantr |
|- ( ( ph /\ P || ( ( A x. D ) + ( C x. B ) ) ) -> ( A gcd B ) = 1 ) |
120 |
|
coprmdvds |
|- ( ( A e. ZZ /\ B e. ZZ /\ D e. ZZ ) -> ( ( A || ( B x. D ) /\ ( A gcd B ) = 1 ) -> A || D ) ) |
121 |
32 49 53 120
|
syl3anc |
|- ( ph -> ( ( A || ( B x. D ) /\ ( A gcd B ) = 1 ) -> A || D ) ) |
122 |
121
|
adantr |
|- ( ( ph /\ P || ( ( A x. D ) + ( C x. B ) ) ) -> ( ( A || ( B x. D ) /\ ( A gcd B ) = 1 ) -> A || D ) ) |
123 |
117 119 122
|
mp2and |
|- ( ( ph /\ P || ( ( A x. D ) + ( C x. B ) ) ) -> A || D ) |
124 |
|
dvdsle |
|- ( ( A e. ZZ /\ D e. NN ) -> ( A || D -> A <_ D ) ) |
125 |
32 58 124
|
syl2anc |
|- ( ph -> ( A || D -> A <_ D ) ) |
126 |
125
|
adantr |
|- ( ( ph /\ P || ( ( A x. D ) + ( C x. B ) ) ) -> ( A || D -> A <_ D ) ) |
127 |
123 126
|
mpd |
|- ( ( ph /\ P || ( ( A x. D ) + ( C x. B ) ) ) -> A <_ D ) |
128 |
52
|
nnrpd |
|- ( ph -> A e. RR+ ) |
129 |
128
|
rprege0d |
|- ( ph -> ( A e. RR /\ 0 <_ A ) ) |
130 |
5
|
nn0ge0d |
|- ( ph -> 0 <_ D ) |
131 |
|
le2sq |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ ( D e. RR /\ 0 <_ D ) ) -> ( A <_ D <-> ( A ^ 2 ) <_ ( D ^ 2 ) ) ) |
132 |
129 43 130 131
|
syl12anc |
|- ( ph -> ( A <_ D <-> ( A ^ 2 ) <_ ( D ^ 2 ) ) ) |
133 |
132
|
adantr |
|- ( ( ph /\ P || ( ( A x. D ) + ( C x. B ) ) ) -> ( A <_ D <-> ( A ^ 2 ) <_ ( D ^ 2 ) ) ) |
134 |
127 133
|
mpbid |
|- ( ( ph /\ P || ( ( A x. D ) + ( C x. B ) ) ) -> ( A ^ 2 ) <_ ( D ^ 2 ) ) |
135 |
52
|
nnsqcld |
|- ( ph -> ( A ^ 2 ) e. NN ) |
136 |
135
|
nnred |
|- ( ph -> ( A ^ 2 ) e. RR ) |
137 |
|
zsqcl |
|- ( D e. ZZ -> ( D ^ 2 ) e. ZZ ) |
138 |
53 137
|
syl |
|- ( ph -> ( D ^ 2 ) e. ZZ ) |
139 |
138
|
zred |
|- ( ph -> ( D ^ 2 ) e. RR ) |
140 |
136 139
|
suble0d |
|- ( ph -> ( ( ( A ^ 2 ) - ( D ^ 2 ) ) <_ 0 <-> ( A ^ 2 ) <_ ( D ^ 2 ) ) ) |
141 |
140
|
adantr |
|- ( ( ph /\ P || ( ( A x. D ) + ( C x. B ) ) ) -> ( ( ( A ^ 2 ) - ( D ^ 2 ) ) <_ 0 <-> ( A ^ 2 ) <_ ( D ^ 2 ) ) ) |
142 |
134 141
|
mpbird |
|- ( ( ph /\ P || ( ( A x. D ) + ( C x. B ) ) ) -> ( ( A ^ 2 ) - ( D ^ 2 ) ) <_ 0 ) |
143 |
31 142
|
eqbrtrrd |
|- ( ( ph /\ P || ( ( A x. D ) + ( C x. B ) ) ) -> ( ( C ^ 2 ) - ( B ^ 2 ) ) <_ 0 ) |
144 |
|
dvdsmul1 |
|- ( ( B e. ZZ /\ D e. ZZ ) -> B || ( B x. D ) ) |
145 |
49 53 144
|
syl2anc |
|- ( ph -> B || ( B x. D ) ) |
146 |
145
|
adantr |
|- ( ( ph /\ P || ( ( A x. D ) + ( C x. B ) ) ) -> B || ( B x. D ) ) |
147 |
146 116
|
breqtrrd |
|- ( ( ph /\ P || ( ( A x. D ) + ( C x. B ) ) ) -> B || ( A x. C ) ) |
148 |
32 49
|
gcdcomd |
|- ( ph -> ( A gcd B ) = ( B gcd A ) ) |
149 |
148 118
|
eqtr3d |
|- ( ph -> ( B gcd A ) = 1 ) |
150 |
149
|
adantr |
|- ( ( ph /\ P || ( ( A x. D ) + ( C x. B ) ) ) -> ( B gcd A ) = 1 ) |
151 |
|
coprmdvds |
|- ( ( B e. ZZ /\ A e. ZZ /\ C e. ZZ ) -> ( ( B || ( A x. C ) /\ ( B gcd A ) = 1 ) -> B || C ) ) |
152 |
49 32 33 151
|
syl3anc |
|- ( ph -> ( ( B || ( A x. C ) /\ ( B gcd A ) = 1 ) -> B || C ) ) |
153 |
152
|
adantr |
|- ( ( ph /\ P || ( ( A x. D ) + ( C x. B ) ) ) -> ( ( B || ( A x. C ) /\ ( B gcd A ) = 1 ) -> B || C ) ) |
154 |
147 150 153
|
mp2and |
|- ( ( ph /\ P || ( ( A x. D ) + ( C x. B ) ) ) -> B || C ) |
155 |
|
dvdsle |
|- ( ( B e. ZZ /\ C e. NN ) -> ( B || C -> B <_ C ) ) |
156 |
49 62 155
|
syl2anc |
|- ( ph -> ( B || C -> B <_ C ) ) |
157 |
156
|
adantr |
|- ( ( ph /\ P || ( ( A x. D ) + ( C x. B ) ) ) -> ( B || C -> B <_ C ) ) |
158 |
154 157
|
mpd |
|- ( ( ph /\ P || ( ( A x. D ) + ( C x. B ) ) ) -> B <_ C ) |
159 |
13 11 17 15
|
le2sqd |
|- ( ph -> ( B <_ C <-> ( B ^ 2 ) <_ ( C ^ 2 ) ) ) |
160 |
159
|
adantr |
|- ( ( ph /\ P || ( ( A x. D ) + ( C x. B ) ) ) -> ( B <_ C <-> ( B ^ 2 ) <_ ( C ^ 2 ) ) ) |
161 |
158 160
|
mpbid |
|- ( ( ph /\ P || ( ( A x. D ) + ( C x. B ) ) ) -> ( B ^ 2 ) <_ ( C ^ 2 ) ) |
162 |
11
|
resqcld |
|- ( ph -> ( C ^ 2 ) e. RR ) |
163 |
|
zsqcl |
|- ( B e. ZZ -> ( B ^ 2 ) e. ZZ ) |
164 |
49 163
|
syl |
|- ( ph -> ( B ^ 2 ) e. ZZ ) |
165 |
164
|
zred |
|- ( ph -> ( B ^ 2 ) e. RR ) |
166 |
162 165
|
subge0d |
|- ( ph -> ( 0 <_ ( ( C ^ 2 ) - ( B ^ 2 ) ) <-> ( B ^ 2 ) <_ ( C ^ 2 ) ) ) |
167 |
166
|
adantr |
|- ( ( ph /\ P || ( ( A x. D ) + ( C x. B ) ) ) -> ( 0 <_ ( ( C ^ 2 ) - ( B ^ 2 ) ) <-> ( B ^ 2 ) <_ ( C ^ 2 ) ) ) |
168 |
161 167
|
mpbird |
|- ( ( ph /\ P || ( ( A x. D ) + ( C x. B ) ) ) -> 0 <_ ( ( C ^ 2 ) - ( B ^ 2 ) ) ) |
169 |
136 139
|
resubcld |
|- ( ph -> ( ( A ^ 2 ) - ( D ^ 2 ) ) e. RR ) |
170 |
30 169
|
eqeltrrd |
|- ( ph -> ( ( C ^ 2 ) - ( B ^ 2 ) ) e. RR ) |
171 |
|
0red |
|- ( ph -> 0 e. RR ) |
172 |
170 171
|
letri3d |
|- ( ph -> ( ( ( C ^ 2 ) - ( B ^ 2 ) ) = 0 <-> ( ( ( C ^ 2 ) - ( B ^ 2 ) ) <_ 0 /\ 0 <_ ( ( C ^ 2 ) - ( B ^ 2 ) ) ) ) ) |
173 |
172
|
adantr |
|- ( ( ph /\ P || ( ( A x. D ) + ( C x. B ) ) ) -> ( ( ( C ^ 2 ) - ( B ^ 2 ) ) = 0 <-> ( ( ( C ^ 2 ) - ( B ^ 2 ) ) <_ 0 /\ 0 <_ ( ( C ^ 2 ) - ( B ^ 2 ) ) ) ) ) |
174 |
143 168 173
|
mpbir2and |
|- ( ( ph /\ P || ( ( A x. D ) + ( C x. B ) ) ) -> ( ( C ^ 2 ) - ( B ^ 2 ) ) = 0 ) |
175 |
21 24 174
|
subeq0d |
|- ( ( ph /\ P || ( ( A x. D ) + ( C x. B ) ) ) -> ( C ^ 2 ) = ( B ^ 2 ) ) |
176 |
12 14 16 18 175
|
sq11d |
|- ( ( ph /\ P || ( ( A x. D ) + ( C x. B ) ) ) -> C = B ) |
177 |
10 176
|
breqtrrd |
|- ( ( ph /\ P || ( ( A x. D ) + ( C x. B ) ) ) -> A <_ C ) |
178 |
7
|
adantr |
|- ( ( ph /\ P || ( ( A x. D ) + ( C x. B ) ) ) -> C <_ D ) |
179 |
41
|
adantr |
|- ( ( ph /\ P || ( ( A x. D ) + ( C x. B ) ) ) -> A e. RR ) |
180 |
43
|
adantr |
|- ( ( ph /\ P || ( ( A x. D ) + ( C x. B ) ) ) -> D e. RR ) |
181 |
2
|
nn0ge0d |
|- ( ph -> 0 <_ A ) |
182 |
181
|
adantr |
|- ( ( ph /\ P || ( ( A x. D ) + ( C x. B ) ) ) -> 0 <_ A ) |
183 |
130
|
adantr |
|- ( ( ph /\ P || ( ( A x. D ) + ( C x. B ) ) ) -> 0 <_ D ) |
184 |
26
|
adantr |
|- ( ( ph /\ P || ( ( A x. D ) + ( C x. B ) ) ) -> ( A ^ 2 ) e. CC ) |
185 |
28
|
adantr |
|- ( ( ph /\ P || ( ( A x. D ) + ( C x. B ) ) ) -> ( D ^ 2 ) e. CC ) |
186 |
168 31
|
breqtrrd |
|- ( ( ph /\ P || ( ( A x. D ) + ( C x. B ) ) ) -> 0 <_ ( ( A ^ 2 ) - ( D ^ 2 ) ) ) |
187 |
169 171
|
letri3d |
|- ( ph -> ( ( ( A ^ 2 ) - ( D ^ 2 ) ) = 0 <-> ( ( ( A ^ 2 ) - ( D ^ 2 ) ) <_ 0 /\ 0 <_ ( ( A ^ 2 ) - ( D ^ 2 ) ) ) ) ) |
188 |
187
|
adantr |
|- ( ( ph /\ P || ( ( A x. D ) + ( C x. B ) ) ) -> ( ( ( A ^ 2 ) - ( D ^ 2 ) ) = 0 <-> ( ( ( A ^ 2 ) - ( D ^ 2 ) ) <_ 0 /\ 0 <_ ( ( A ^ 2 ) - ( D ^ 2 ) ) ) ) ) |
189 |
142 186 188
|
mpbir2and |
|- ( ( ph /\ P || ( ( A x. D ) + ( C x. B ) ) ) -> ( ( A ^ 2 ) - ( D ^ 2 ) ) = 0 ) |
190 |
184 185 189
|
subeq0d |
|- ( ( ph /\ P || ( ( A x. D ) + ( C x. B ) ) ) -> ( A ^ 2 ) = ( D ^ 2 ) ) |
191 |
179 180 182 183 190
|
sq11d |
|- ( ( ph /\ P || ( ( A x. D ) + ( C x. B ) ) ) -> A = D ) |
192 |
178 191
|
breqtrrd |
|- ( ( ph /\ P || ( ( A x. D ) + ( C x. B ) ) ) -> C <_ A ) |
193 |
41 11
|
letri3d |
|- ( ph -> ( A = C <-> ( A <_ C /\ C <_ A ) ) ) |
194 |
193
|
adantr |
|- ( ( ph /\ P || ( ( A x. D ) + ( C x. B ) ) ) -> ( A = C <-> ( A <_ C /\ C <_ A ) ) ) |
195 |
177 192 194
|
mpbir2and |
|- ( ( ph /\ P || ( ( A x. D ) + ( C x. B ) ) ) -> A = C ) |
196 |
25
|
adantr |
|- ( ( ph /\ P || ( ( A x. D ) - ( C x. B ) ) ) -> A e. CC ) |
197 |
19
|
adantr |
|- ( ( ph /\ P || ( ( A x. D ) - ( C x. B ) ) ) -> C e. CC ) |
198 |
22
|
adantr |
|- ( ( ph /\ P || ( ( A x. D ) - ( C x. B ) ) ) -> B e. CC ) |
199 |
65
|
adantr |
|- ( ( ph /\ P || ( ( A x. D ) - ( C x. B ) ) ) -> B =/= 0 ) |
200 |
43
|
adantr |
|- ( ( ph /\ P || ( ( A x. D ) - ( C x. B ) ) ) -> D e. RR ) |
201 |
13
|
adantr |
|- ( ( ph /\ P || ( ( A x. D ) - ( C x. B ) ) ) -> B e. RR ) |
202 |
130
|
adantr |
|- ( ( ph /\ P || ( ( A x. D ) - ( C x. B ) ) ) -> 0 <_ D ) |
203 |
17
|
adantr |
|- ( ( ph /\ P || ( ( A x. D ) - ( C x. B ) ) ) -> 0 <_ B ) |
204 |
28
|
adantr |
|- ( ( ph /\ P || ( ( A x. D ) - ( C x. B ) ) ) -> ( D ^ 2 ) e. CC ) |
205 |
23
|
adantr |
|- ( ( ph /\ P || ( ( A x. D ) - ( C x. B ) ) ) -> ( B ^ 2 ) e. CC ) |
206 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
207 |
1 206
|
syl |
|- ( ph -> P e. NN ) |
208 |
207
|
nnne0d |
|- ( ph -> P =/= 0 ) |
209 |
208
|
neneqd |
|- ( ph -> -. P = 0 ) |
210 |
209
|
adantr |
|- ( ( ph /\ P || ( ( A x. D ) - ( C x. B ) ) ) -> -. P = 0 ) |
211 |
81 28 23
|
subdid |
|- ( ph -> ( P x. ( ( D ^ 2 ) - ( B ^ 2 ) ) ) = ( ( P x. ( D ^ 2 ) ) - ( P x. ( B ^ 2 ) ) ) ) |
212 |
81 28
|
mulcld |
|- ( ph -> ( P x. ( D ^ 2 ) ) e. CC ) |
213 |
26 28
|
mulcld |
|- ( ph -> ( ( A ^ 2 ) x. ( D ^ 2 ) ) e. CC ) |
214 |
81 23
|
mulcld |
|- ( ph -> ( P x. ( B ^ 2 ) ) e. CC ) |
215 |
20 23
|
mulcld |
|- ( ph -> ( ( C ^ 2 ) x. ( B ^ 2 ) ) e. CC ) |
216 |
23 28
|
mulcomd |
|- ( ph -> ( ( B ^ 2 ) x. ( D ^ 2 ) ) = ( ( D ^ 2 ) x. ( B ^ 2 ) ) ) |
217 |
8
|
oveq1d |
|- ( ph -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) - ( A ^ 2 ) ) = ( P - ( A ^ 2 ) ) ) |
218 |
26 23
|
pncan2d |
|- ( ph -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) - ( A ^ 2 ) ) = ( B ^ 2 ) ) |
219 |
217 218
|
eqtr3d |
|- ( ph -> ( P - ( A ^ 2 ) ) = ( B ^ 2 ) ) |
220 |
219
|
oveq1d |
|- ( ph -> ( ( P - ( A ^ 2 ) ) x. ( D ^ 2 ) ) = ( ( B ^ 2 ) x. ( D ^ 2 ) ) ) |
221 |
9
|
oveq1d |
|- ( ph -> ( ( ( C ^ 2 ) + ( D ^ 2 ) ) - ( C ^ 2 ) ) = ( P - ( C ^ 2 ) ) ) |
222 |
20 28
|
pncan2d |
|- ( ph -> ( ( ( C ^ 2 ) + ( D ^ 2 ) ) - ( C ^ 2 ) ) = ( D ^ 2 ) ) |
223 |
221 222
|
eqtr3d |
|- ( ph -> ( P - ( C ^ 2 ) ) = ( D ^ 2 ) ) |
224 |
223
|
oveq1d |
|- ( ph -> ( ( P - ( C ^ 2 ) ) x. ( B ^ 2 ) ) = ( ( D ^ 2 ) x. ( B ^ 2 ) ) ) |
225 |
216 220 224
|
3eqtr4d |
|- ( ph -> ( ( P - ( A ^ 2 ) ) x. ( D ^ 2 ) ) = ( ( P - ( C ^ 2 ) ) x. ( B ^ 2 ) ) ) |
226 |
81 26 28
|
subdird |
|- ( ph -> ( ( P - ( A ^ 2 ) ) x. ( D ^ 2 ) ) = ( ( P x. ( D ^ 2 ) ) - ( ( A ^ 2 ) x. ( D ^ 2 ) ) ) ) |
227 |
81 20 23
|
subdird |
|- ( ph -> ( ( P - ( C ^ 2 ) ) x. ( B ^ 2 ) ) = ( ( P x. ( B ^ 2 ) ) - ( ( C ^ 2 ) x. ( B ^ 2 ) ) ) ) |
228 |
225 226 227
|
3eqtr3d |
|- ( ph -> ( ( P x. ( D ^ 2 ) ) - ( ( A ^ 2 ) x. ( D ^ 2 ) ) ) = ( ( P x. ( B ^ 2 ) ) - ( ( C ^ 2 ) x. ( B ^ 2 ) ) ) ) |
229 |
212 213 214 215 228
|
subeqxfrd |
|- ( ph -> ( ( P x. ( D ^ 2 ) ) - ( P x. ( B ^ 2 ) ) ) = ( ( ( A ^ 2 ) x. ( D ^ 2 ) ) - ( ( C ^ 2 ) x. ( B ^ 2 ) ) ) ) |
230 |
211 229
|
eqtrd |
|- ( ph -> ( P x. ( ( D ^ 2 ) - ( B ^ 2 ) ) ) = ( ( ( A ^ 2 ) x. ( D ^ 2 ) ) - ( ( C ^ 2 ) x. ( B ^ 2 ) ) ) ) |
231 |
25 27
|
sqmuld |
|- ( ph -> ( ( A x. D ) ^ 2 ) = ( ( A ^ 2 ) x. ( D ^ 2 ) ) ) |
232 |
19 22
|
sqmuld |
|- ( ph -> ( ( C x. B ) ^ 2 ) = ( ( C ^ 2 ) x. ( B ^ 2 ) ) ) |
233 |
231 232
|
oveq12d |
|- ( ph -> ( ( ( A x. D ) ^ 2 ) - ( ( C x. B ) ^ 2 ) ) = ( ( ( A ^ 2 ) x. ( D ^ 2 ) ) - ( ( C ^ 2 ) x. ( B ^ 2 ) ) ) ) |
234 |
25 27
|
mulcld |
|- ( ph -> ( A x. D ) e. CC ) |
235 |
19 22
|
mulcld |
|- ( ph -> ( C x. B ) e. CC ) |
236 |
|
subsq |
|- ( ( ( A x. D ) e. CC /\ ( C x. B ) e. CC ) -> ( ( ( A x. D ) ^ 2 ) - ( ( C x. B ) ^ 2 ) ) = ( ( ( A x. D ) + ( C x. B ) ) x. ( ( A x. D ) - ( C x. B ) ) ) ) |
237 |
234 235 236
|
syl2anc |
|- ( ph -> ( ( ( A x. D ) ^ 2 ) - ( ( C x. B ) ^ 2 ) ) = ( ( ( A x. D ) + ( C x. B ) ) x. ( ( A x. D ) - ( C x. B ) ) ) ) |
238 |
230 233 237
|
3eqtr2d |
|- ( ph -> ( P x. ( ( D ^ 2 ) - ( B ^ 2 ) ) ) = ( ( ( A x. D ) + ( C x. B ) ) x. ( ( A x. D ) - ( C x. B ) ) ) ) |
239 |
238
|
adantr |
|- ( ( ph /\ P || ( ( A x. D ) - ( C x. B ) ) ) -> ( P x. ( ( D ^ 2 ) - ( B ^ 2 ) ) ) = ( ( ( A x. D ) + ( C x. B ) ) x. ( ( A x. D ) - ( C x. B ) ) ) ) |
240 |
234
|
adantr |
|- ( ( ph /\ P || ( ( A x. D ) - ( C x. B ) ) ) -> ( A x. D ) e. CC ) |
241 |
|
simpll |
|- ( ( ( ph /\ P || ( ( A x. D ) - ( C x. B ) ) ) /\ -. ( A x. D ) = ( C x. B ) ) -> ph ) |
242 |
|
simpr |
|- ( ( ( ph /\ P || ( ( A x. D ) - ( C x. B ) ) ) /\ -. ( A x. D ) = ( C x. B ) ) -> -. ( A x. D ) = ( C x. B ) ) |
243 |
242
|
neqned |
|- ( ( ( ph /\ P || ( ( A x. D ) - ( C x. B ) ) ) /\ -. ( A x. D ) = ( C x. B ) ) -> ( A x. D ) =/= ( C x. B ) ) |
244 |
90 91
|
zsubcld |
|- ( ph -> ( ( A x. D ) - ( C x. B ) ) e. ZZ ) |
245 |
|
dvdssqim |
|- ( ( P e. ZZ /\ ( ( A x. D ) - ( C x. B ) ) e. ZZ ) -> ( P || ( ( A x. D ) - ( C x. B ) ) -> ( P ^ 2 ) || ( ( ( A x. D ) - ( C x. B ) ) ^ 2 ) ) ) |
246 |
80 244 245
|
syl2anc |
|- ( ph -> ( P || ( ( A x. D ) - ( C x. B ) ) -> ( P ^ 2 ) || ( ( ( A x. D ) - ( C x. B ) ) ^ 2 ) ) ) |
247 |
246
|
imp |
|- ( ( ph /\ P || ( ( A x. D ) - ( C x. B ) ) ) -> ( P ^ 2 ) || ( ( ( A x. D ) - ( C x. B ) ) ^ 2 ) ) |
248 |
247
|
adantr |
|- ( ( ( ph /\ P || ( ( A x. D ) - ( C x. B ) ) ) /\ -. ( A x. D ) = ( C x. B ) ) -> ( P ^ 2 ) || ( ( ( A x. D ) - ( C x. B ) ) ^ 2 ) ) |
249 |
96
|
adantr |
|- ( ( ph /\ ( A x. D ) =/= ( C x. B ) ) -> ( P ^ 2 ) e. ZZ ) |
250 |
244
|
adantr |
|- ( ( ph /\ ( A x. D ) =/= ( C x. B ) ) -> ( ( A x. D ) - ( C x. B ) ) e. ZZ ) |
251 |
234
|
adantr |
|- ( ( ph /\ ( A x. D ) =/= ( C x. B ) ) -> ( A x. D ) e. CC ) |
252 |
235
|
adantr |
|- ( ( ph /\ ( A x. D ) =/= ( C x. B ) ) -> ( C x. B ) e. CC ) |
253 |
|
simpr |
|- ( ( ph /\ ( A x. D ) =/= ( C x. B ) ) -> ( A x. D ) =/= ( C x. B ) ) |
254 |
251 252 253
|
subne0d |
|- ( ( ph /\ ( A x. D ) =/= ( C x. B ) ) -> ( ( A x. D ) - ( C x. B ) ) =/= 0 ) |
255 |
250 254
|
znsqcld |
|- ( ( ph /\ ( A x. D ) =/= ( C x. B ) ) -> ( ( ( A x. D ) - ( C x. B ) ) ^ 2 ) e. NN ) |
256 |
|
dvdsle |
|- ( ( ( P ^ 2 ) e. ZZ /\ ( ( ( A x. D ) - ( C x. B ) ) ^ 2 ) e. NN ) -> ( ( P ^ 2 ) || ( ( ( A x. D ) - ( C x. B ) ) ^ 2 ) -> ( P ^ 2 ) <_ ( ( ( A x. D ) - ( C x. B ) ) ^ 2 ) ) ) |
257 |
249 255 256
|
syl2anc |
|- ( ( ph /\ ( A x. D ) =/= ( C x. B ) ) -> ( ( P ^ 2 ) || ( ( ( A x. D ) - ( C x. B ) ) ^ 2 ) -> ( P ^ 2 ) <_ ( ( ( A x. D ) - ( C x. B ) ) ^ 2 ) ) ) |
258 |
257
|
imp |
|- ( ( ( ph /\ ( A x. D ) =/= ( C x. B ) ) /\ ( P ^ 2 ) || ( ( ( A x. D ) - ( C x. B ) ) ^ 2 ) ) -> ( P ^ 2 ) <_ ( ( ( A x. D ) - ( C x. B ) ) ^ 2 ) ) |
259 |
241 243 248 258
|
syl21anc |
|- ( ( ( ph /\ P || ( ( A x. D ) - ( C x. B ) ) ) /\ -. ( A x. D ) = ( C x. B ) ) -> ( P ^ 2 ) <_ ( ( ( A x. D ) - ( C x. B ) ) ^ 2 ) ) |
260 |
41 43
|
remulcld |
|- ( ph -> ( A x. D ) e. RR ) |
261 |
11 13
|
remulcld |
|- ( ph -> ( C x. B ) e. RR ) |
262 |
260 261
|
resubcld |
|- ( ph -> ( ( A x. D ) - ( C x. B ) ) e. RR ) |
263 |
262
|
resqcld |
|- ( ph -> ( ( ( A x. D ) - ( C x. B ) ) ^ 2 ) e. RR ) |
264 |
62
|
nnrpd |
|- ( ph -> C e. RR+ ) |
265 |
128 264
|
rpmulcld |
|- ( ph -> ( A x. C ) e. RR+ ) |
266 |
67
|
nnrpd |
|- ( ph -> B e. RR+ ) |
267 |
58
|
nnrpd |
|- ( ph -> D e. RR+ ) |
268 |
266 267
|
rpmulcld |
|- ( ph -> ( B x. D ) e. RR+ ) |
269 |
265 268
|
rpaddcld |
|- ( ph -> ( ( A x. C ) + ( B x. D ) ) e. RR+ ) |
270 |
|
2z |
|- 2 e. ZZ |
271 |
270
|
a1i |
|- ( ph -> 2 e. ZZ ) |
272 |
269 271
|
rpexpcld |
|- ( ph -> ( ( ( A x. C ) + ( B x. D ) ) ^ 2 ) e. RR+ ) |
273 |
263 272
|
ltaddrp2d |
|- ( ph -> ( ( ( A x. D ) - ( C x. B ) ) ^ 2 ) < ( ( ( ( A x. C ) + ( B x. D ) ) ^ 2 ) + ( ( ( A x. D ) - ( C x. B ) ) ^ 2 ) ) ) |
274 |
|
bhmafibid2 |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) x. ( ( C ^ 2 ) + ( D ^ 2 ) ) ) = ( ( ( ( A x. C ) + ( B x. D ) ) ^ 2 ) + ( ( ( A x. D ) - ( B x. C ) ) ^ 2 ) ) ) |
275 |
41 13 11 43 274
|
syl22anc |
|- ( ph -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) x. ( ( C ^ 2 ) + ( D ^ 2 ) ) ) = ( ( ( ( A x. C ) + ( B x. D ) ) ^ 2 ) + ( ( ( A x. D ) - ( B x. C ) ) ^ 2 ) ) ) |
276 |
75 275
|
eqtr3d |
|- ( ph -> ( P x. P ) = ( ( ( ( A x. C ) + ( B x. D ) ) ^ 2 ) + ( ( ( A x. D ) - ( B x. C ) ) ^ 2 ) ) ) |
277 |
83
|
oveq2d |
|- ( ph -> ( ( A x. D ) - ( C x. B ) ) = ( ( A x. D ) - ( B x. C ) ) ) |
278 |
277
|
oveq1d |
|- ( ph -> ( ( ( A x. D ) - ( C x. B ) ) ^ 2 ) = ( ( ( A x. D ) - ( B x. C ) ) ^ 2 ) ) |
279 |
278
|
oveq2d |
|- ( ph -> ( ( ( ( A x. C ) + ( B x. D ) ) ^ 2 ) + ( ( ( A x. D ) - ( C x. B ) ) ^ 2 ) ) = ( ( ( ( A x. C ) + ( B x. D ) ) ^ 2 ) + ( ( ( A x. D ) - ( B x. C ) ) ^ 2 ) ) ) |
280 |
276 279
|
eqtr4d |
|- ( ph -> ( P x. P ) = ( ( ( ( A x. C ) + ( B x. D ) ) ^ 2 ) + ( ( ( A x. D ) - ( C x. B ) ) ^ 2 ) ) ) |
281 |
273 280
|
breqtrrd |
|- ( ph -> ( ( ( A x. D ) - ( C x. B ) ) ^ 2 ) < ( P x. P ) ) |
282 |
281 82
|
breqtrrd |
|- ( ph -> ( ( ( A x. D ) - ( C x. B ) ) ^ 2 ) < ( P ^ 2 ) ) |
283 |
241 282
|
syl |
|- ( ( ( ph /\ P || ( ( A x. D ) - ( C x. B ) ) ) /\ -. ( A x. D ) = ( C x. B ) ) -> ( ( ( A x. D ) - ( C x. B ) ) ^ 2 ) < ( P ^ 2 ) ) |
284 |
263 101
|
ltnled |
|- ( ph -> ( ( ( ( A x. D ) - ( C x. B ) ) ^ 2 ) < ( P ^ 2 ) <-> -. ( P ^ 2 ) <_ ( ( ( A x. D ) - ( C x. B ) ) ^ 2 ) ) ) |
285 |
241 284
|
syl |
|- ( ( ( ph /\ P || ( ( A x. D ) - ( C x. B ) ) ) /\ -. ( A x. D ) = ( C x. B ) ) -> ( ( ( ( A x. D ) - ( C x. B ) ) ^ 2 ) < ( P ^ 2 ) <-> -. ( P ^ 2 ) <_ ( ( ( A x. D ) - ( C x. B ) ) ^ 2 ) ) ) |
286 |
283 285
|
mpbid |
|- ( ( ( ph /\ P || ( ( A x. D ) - ( C x. B ) ) ) /\ -. ( A x. D ) = ( C x. B ) ) -> -. ( P ^ 2 ) <_ ( ( ( A x. D ) - ( C x. B ) ) ^ 2 ) ) |
287 |
259 286
|
condan |
|- ( ( ph /\ P || ( ( A x. D ) - ( C x. B ) ) ) -> ( A x. D ) = ( C x. B ) ) |
288 |
240 287
|
subeq0bd |
|- ( ( ph /\ P || ( ( A x. D ) - ( C x. B ) ) ) -> ( ( A x. D ) - ( C x. B ) ) = 0 ) |
289 |
288
|
oveq2d |
|- ( ( ph /\ P || ( ( A x. D ) - ( C x. B ) ) ) -> ( ( ( A x. D ) + ( C x. B ) ) x. ( ( A x. D ) - ( C x. B ) ) ) = ( ( ( A x. D ) + ( C x. B ) ) x. 0 ) ) |
290 |
234 235
|
addcld |
|- ( ph -> ( ( A x. D ) + ( C x. B ) ) e. CC ) |
291 |
290
|
mul01d |
|- ( ph -> ( ( ( A x. D ) + ( C x. B ) ) x. 0 ) = 0 ) |
292 |
291
|
adantr |
|- ( ( ph /\ P || ( ( A x. D ) - ( C x. B ) ) ) -> ( ( ( A x. D ) + ( C x. B ) ) x. 0 ) = 0 ) |
293 |
239 289 292
|
3eqtrd |
|- ( ( ph /\ P || ( ( A x. D ) - ( C x. B ) ) ) -> ( P x. ( ( D ^ 2 ) - ( B ^ 2 ) ) ) = 0 ) |
294 |
28 23
|
subcld |
|- ( ph -> ( ( D ^ 2 ) - ( B ^ 2 ) ) e. CC ) |
295 |
81 294
|
mul0ord |
|- ( ph -> ( ( P x. ( ( D ^ 2 ) - ( B ^ 2 ) ) ) = 0 <-> ( P = 0 \/ ( ( D ^ 2 ) - ( B ^ 2 ) ) = 0 ) ) ) |
296 |
295
|
adantr |
|- ( ( ph /\ P || ( ( A x. D ) - ( C x. B ) ) ) -> ( ( P x. ( ( D ^ 2 ) - ( B ^ 2 ) ) ) = 0 <-> ( P = 0 \/ ( ( D ^ 2 ) - ( B ^ 2 ) ) = 0 ) ) ) |
297 |
293 296
|
mpbid |
|- ( ( ph /\ P || ( ( A x. D ) - ( C x. B ) ) ) -> ( P = 0 \/ ( ( D ^ 2 ) - ( B ^ 2 ) ) = 0 ) ) |
298 |
297
|
ord |
|- ( ( ph /\ P || ( ( A x. D ) - ( C x. B ) ) ) -> ( -. P = 0 -> ( ( D ^ 2 ) - ( B ^ 2 ) ) = 0 ) ) |
299 |
210 298
|
mpd |
|- ( ( ph /\ P || ( ( A x. D ) - ( C x. B ) ) ) -> ( ( D ^ 2 ) - ( B ^ 2 ) ) = 0 ) |
300 |
204 205 299
|
subeq0d |
|- ( ( ph /\ P || ( ( A x. D ) - ( C x. B ) ) ) -> ( D ^ 2 ) = ( B ^ 2 ) ) |
301 |
200 201 202 203 300
|
sq11d |
|- ( ( ph /\ P || ( ( A x. D ) - ( C x. B ) ) ) -> D = B ) |
302 |
301
|
oveq2d |
|- ( ( ph /\ P || ( ( A x. D ) - ( C x. B ) ) ) -> ( A x. D ) = ( A x. B ) ) |
303 |
302 287
|
eqtr3d |
|- ( ( ph /\ P || ( ( A x. D ) - ( C x. B ) ) ) -> ( A x. B ) = ( C x. B ) ) |
304 |
196 197 198 199 303
|
mulcan2ad |
|- ( ( ph /\ P || ( ( A x. D ) - ( C x. B ) ) ) -> A = C ) |
305 |
138 164
|
zsubcld |
|- ( ph -> ( ( D ^ 2 ) - ( B ^ 2 ) ) e. ZZ ) |
306 |
|
dvdsmul1 |
|- ( ( P e. ZZ /\ ( ( D ^ 2 ) - ( B ^ 2 ) ) e. ZZ ) -> P || ( P x. ( ( D ^ 2 ) - ( B ^ 2 ) ) ) ) |
307 |
80 305 306
|
syl2anc |
|- ( ph -> P || ( P x. ( ( D ^ 2 ) - ( B ^ 2 ) ) ) ) |
308 |
307 238
|
breqtrd |
|- ( ph -> P || ( ( ( A x. D ) + ( C x. B ) ) x. ( ( A x. D ) - ( C x. B ) ) ) ) |
309 |
|
euclemma |
|- ( ( P e. Prime /\ ( ( A x. D ) + ( C x. B ) ) e. ZZ /\ ( ( A x. D ) - ( C x. B ) ) e. ZZ ) -> ( P || ( ( ( A x. D ) + ( C x. B ) ) x. ( ( A x. D ) - ( C x. B ) ) ) <-> ( P || ( ( A x. D ) + ( C x. B ) ) \/ P || ( ( A x. D ) - ( C x. B ) ) ) ) ) |
310 |
1 92 244 309
|
syl3anc |
|- ( ph -> ( P || ( ( ( A x. D ) + ( C x. B ) ) x. ( ( A x. D ) - ( C x. B ) ) ) <-> ( P || ( ( A x. D ) + ( C x. B ) ) \/ P || ( ( A x. D ) - ( C x. B ) ) ) ) ) |
311 |
308 310
|
mpbid |
|- ( ph -> ( P || ( ( A x. D ) + ( C x. B ) ) \/ P || ( ( A x. D ) - ( C x. B ) ) ) ) |
312 |
195 304 311
|
mpjaodan |
|- ( ph -> A = C ) |
313 |
312
|
oveq1d |
|- ( ph -> ( A ^ 2 ) = ( C ^ 2 ) ) |
314 |
313
|
oveq2d |
|- ( ph -> ( P - ( A ^ 2 ) ) = ( P - ( C ^ 2 ) ) ) |
315 |
314 219 223
|
3eqtr3d |
|- ( ph -> ( B ^ 2 ) = ( D ^ 2 ) ) |
316 |
13 43 17 130 315
|
sq11d |
|- ( ph -> B = D ) |
317 |
312 316
|
jca |
|- ( ph -> ( A = C /\ B = D ) ) |