Step |
Hyp |
Ref |
Expression |
1 |
|
2sqcoprm.1 |
|- ( ph -> P e. Prime ) |
2 |
|
2sqcoprm.2 |
|- ( ph -> A e. ZZ ) |
3 |
|
2sqcoprm.3 |
|- ( ph -> B e. ZZ ) |
4 |
|
2sqcoprm.4 |
|- ( ph -> ( ( A ^ 2 ) + ( B ^ 2 ) ) = P ) |
5 |
4 1
|
eqeltrd |
|- ( ph -> ( ( A ^ 2 ) + ( B ^ 2 ) ) e. Prime ) |
6 |
5
|
adantr |
|- ( ( ph /\ A = 0 ) -> ( ( A ^ 2 ) + ( B ^ 2 ) ) e. Prime ) |
7 |
|
sq0i |
|- ( A = 0 -> ( A ^ 2 ) = 0 ) |
8 |
7
|
oveq1d |
|- ( A = 0 -> ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( 0 + ( B ^ 2 ) ) ) |
9 |
3
|
zcnd |
|- ( ph -> B e. CC ) |
10 |
9
|
sqcld |
|- ( ph -> ( B ^ 2 ) e. CC ) |
11 |
10
|
addid2d |
|- ( ph -> ( 0 + ( B ^ 2 ) ) = ( B ^ 2 ) ) |
12 |
8 11
|
sylan9eqr |
|- ( ( ph /\ A = 0 ) -> ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( B ^ 2 ) ) |
13 |
|
sqnprm |
|- ( B e. ZZ -> -. ( B ^ 2 ) e. Prime ) |
14 |
3 13
|
syl |
|- ( ph -> -. ( B ^ 2 ) e. Prime ) |
15 |
14
|
adantr |
|- ( ( ph /\ A = 0 ) -> -. ( B ^ 2 ) e. Prime ) |
16 |
12 15
|
eqneltrd |
|- ( ( ph /\ A = 0 ) -> -. ( ( A ^ 2 ) + ( B ^ 2 ) ) e. Prime ) |
17 |
6 16
|
pm2.65da |
|- ( ph -> -. A = 0 ) |
18 |
17
|
neqned |
|- ( ph -> A =/= 0 ) |