| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2sqcoprm.1 |  |-  ( ph -> P e. Prime ) | 
						
							| 2 |  | 2sqcoprm.2 |  |-  ( ph -> A e. ZZ ) | 
						
							| 3 |  | 2sqcoprm.3 |  |-  ( ph -> B e. ZZ ) | 
						
							| 4 |  | 2sqcoprm.4 |  |-  ( ph -> ( ( A ^ 2 ) + ( B ^ 2 ) ) = P ) | 
						
							| 5 | 4 1 | eqeltrd |  |-  ( ph -> ( ( A ^ 2 ) + ( B ^ 2 ) ) e. Prime ) | 
						
							| 6 | 5 | adantr |  |-  ( ( ph /\ A = 0 ) -> ( ( A ^ 2 ) + ( B ^ 2 ) ) e. Prime ) | 
						
							| 7 |  | sq0i |  |-  ( A = 0 -> ( A ^ 2 ) = 0 ) | 
						
							| 8 | 7 | oveq1d |  |-  ( A = 0 -> ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( 0 + ( B ^ 2 ) ) ) | 
						
							| 9 | 3 | zcnd |  |-  ( ph -> B e. CC ) | 
						
							| 10 | 9 | sqcld |  |-  ( ph -> ( B ^ 2 ) e. CC ) | 
						
							| 11 | 10 | addlidd |  |-  ( ph -> ( 0 + ( B ^ 2 ) ) = ( B ^ 2 ) ) | 
						
							| 12 | 8 11 | sylan9eqr |  |-  ( ( ph /\ A = 0 ) -> ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( B ^ 2 ) ) | 
						
							| 13 |  | sqnprm |  |-  ( B e. ZZ -> -. ( B ^ 2 ) e. Prime ) | 
						
							| 14 | 3 13 | syl |  |-  ( ph -> -. ( B ^ 2 ) e. Prime ) | 
						
							| 15 | 14 | adantr |  |-  ( ( ph /\ A = 0 ) -> -. ( B ^ 2 ) e. Prime ) | 
						
							| 16 | 12 15 | eqneltrd |  |-  ( ( ph /\ A = 0 ) -> -. ( ( A ^ 2 ) + ( B ^ 2 ) ) e. Prime ) | 
						
							| 17 | 6 16 | pm2.65da |  |-  ( ph -> -. A = 0 ) | 
						
							| 18 | 17 | neqned |  |-  ( ph -> A =/= 0 ) |