| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqeq2 |  |-  ( P = ( ( A ^ 2 ) + ( B ^ 2 ) ) -> ( ( ( A ^ 2 ) + ( C ^ 2 ) ) = P <-> ( ( A ^ 2 ) + ( C ^ 2 ) ) = ( ( A ^ 2 ) + ( B ^ 2 ) ) ) ) | 
						
							| 2 | 1 | eqcoms |  |-  ( ( ( A ^ 2 ) + ( B ^ 2 ) ) = P -> ( ( ( A ^ 2 ) + ( C ^ 2 ) ) = P <-> ( ( A ^ 2 ) + ( C ^ 2 ) ) = ( ( A ^ 2 ) + ( B ^ 2 ) ) ) ) | 
						
							| 3 | 2 | adantl |  |-  ( ( ( A e. NN0 /\ B e. NN0 /\ C e. NN0 ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = P ) -> ( ( ( A ^ 2 ) + ( C ^ 2 ) ) = P <-> ( ( A ^ 2 ) + ( C ^ 2 ) ) = ( ( A ^ 2 ) + ( B ^ 2 ) ) ) ) | 
						
							| 4 |  | eqcom |  |-  ( ( ( A ^ 2 ) + ( C ^ 2 ) ) = ( ( A ^ 2 ) + ( B ^ 2 ) ) <-> ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( ( A ^ 2 ) + ( C ^ 2 ) ) ) | 
						
							| 5 |  | 2sqreulem2 |  |-  ( ( A e. NN0 /\ B e. NN0 /\ C e. NN0 ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( ( A ^ 2 ) + ( C ^ 2 ) ) -> B = C ) ) | 
						
							| 6 | 4 5 | biimtrid |  |-  ( ( A e. NN0 /\ B e. NN0 /\ C e. NN0 ) -> ( ( ( A ^ 2 ) + ( C ^ 2 ) ) = ( ( A ^ 2 ) + ( B ^ 2 ) ) -> B = C ) ) | 
						
							| 7 | 6 | adantr |  |-  ( ( ( A e. NN0 /\ B e. NN0 /\ C e. NN0 ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = P ) -> ( ( ( A ^ 2 ) + ( C ^ 2 ) ) = ( ( A ^ 2 ) + ( B ^ 2 ) ) -> B = C ) ) | 
						
							| 8 | 3 7 | sylbid |  |-  ( ( ( A e. NN0 /\ B e. NN0 /\ C e. NN0 ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = P ) -> ( ( ( A ^ 2 ) + ( C ^ 2 ) ) = P -> B = C ) ) | 
						
							| 9 | 8 | adantld |  |-  ( ( ( A e. NN0 /\ B e. NN0 /\ C e. NN0 ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = P ) -> ( ( ps /\ ( ( A ^ 2 ) + ( C ^ 2 ) ) = P ) -> B = C ) ) | 
						
							| 10 | 9 | ex |  |-  ( ( A e. NN0 /\ B e. NN0 /\ C e. NN0 ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) = P -> ( ( ps /\ ( ( A ^ 2 ) + ( C ^ 2 ) ) = P ) -> B = C ) ) ) | 
						
							| 11 | 10 | adantld |  |-  ( ( A e. NN0 /\ B e. NN0 /\ C e. NN0 ) -> ( ( ph /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = P ) -> ( ( ps /\ ( ( A ^ 2 ) + ( C ^ 2 ) ) = P ) -> B = C ) ) ) | 
						
							| 12 | 11 | impd |  |-  ( ( A e. NN0 /\ B e. NN0 /\ C e. NN0 ) -> ( ( ( ph /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = P ) /\ ( ps /\ ( ( A ^ 2 ) + ( C ^ 2 ) ) = P ) ) -> B = C ) ) | 
						
							| 13 | 12 | 3expb |  |-  ( ( A e. NN0 /\ ( B e. NN0 /\ C e. NN0 ) ) -> ( ( ( ph /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = P ) /\ ( ps /\ ( ( A ^ 2 ) + ( C ^ 2 ) ) = P ) ) -> B = C ) ) |