Step |
Hyp |
Ref |
Expression |
1 |
|
eqeq2 |
|- ( P = ( ( A ^ 2 ) + ( B ^ 2 ) ) -> ( ( ( A ^ 2 ) + ( C ^ 2 ) ) = P <-> ( ( A ^ 2 ) + ( C ^ 2 ) ) = ( ( A ^ 2 ) + ( B ^ 2 ) ) ) ) |
2 |
1
|
eqcoms |
|- ( ( ( A ^ 2 ) + ( B ^ 2 ) ) = P -> ( ( ( A ^ 2 ) + ( C ^ 2 ) ) = P <-> ( ( A ^ 2 ) + ( C ^ 2 ) ) = ( ( A ^ 2 ) + ( B ^ 2 ) ) ) ) |
3 |
2
|
adantl |
|- ( ( ( A e. NN0 /\ B e. NN0 /\ C e. NN0 ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = P ) -> ( ( ( A ^ 2 ) + ( C ^ 2 ) ) = P <-> ( ( A ^ 2 ) + ( C ^ 2 ) ) = ( ( A ^ 2 ) + ( B ^ 2 ) ) ) ) |
4 |
|
eqcom |
|- ( ( ( A ^ 2 ) + ( C ^ 2 ) ) = ( ( A ^ 2 ) + ( B ^ 2 ) ) <-> ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( ( A ^ 2 ) + ( C ^ 2 ) ) ) |
5 |
|
2sqreulem2 |
|- ( ( A e. NN0 /\ B e. NN0 /\ C e. NN0 ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( ( A ^ 2 ) + ( C ^ 2 ) ) -> B = C ) ) |
6 |
4 5
|
syl5bi |
|- ( ( A e. NN0 /\ B e. NN0 /\ C e. NN0 ) -> ( ( ( A ^ 2 ) + ( C ^ 2 ) ) = ( ( A ^ 2 ) + ( B ^ 2 ) ) -> B = C ) ) |
7 |
6
|
adantr |
|- ( ( ( A e. NN0 /\ B e. NN0 /\ C e. NN0 ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = P ) -> ( ( ( A ^ 2 ) + ( C ^ 2 ) ) = ( ( A ^ 2 ) + ( B ^ 2 ) ) -> B = C ) ) |
8 |
3 7
|
sylbid |
|- ( ( ( A e. NN0 /\ B e. NN0 /\ C e. NN0 ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = P ) -> ( ( ( A ^ 2 ) + ( C ^ 2 ) ) = P -> B = C ) ) |
9 |
8
|
adantld |
|- ( ( ( A e. NN0 /\ B e. NN0 /\ C e. NN0 ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = P ) -> ( ( ps /\ ( ( A ^ 2 ) + ( C ^ 2 ) ) = P ) -> B = C ) ) |
10 |
9
|
ex |
|- ( ( A e. NN0 /\ B e. NN0 /\ C e. NN0 ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) = P -> ( ( ps /\ ( ( A ^ 2 ) + ( C ^ 2 ) ) = P ) -> B = C ) ) ) |
11 |
10
|
adantld |
|- ( ( A e. NN0 /\ B e. NN0 /\ C e. NN0 ) -> ( ( ph /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = P ) -> ( ( ps /\ ( ( A ^ 2 ) + ( C ^ 2 ) ) = P ) -> B = C ) ) ) |
12 |
11
|
impd |
|- ( ( A e. NN0 /\ B e. NN0 /\ C e. NN0 ) -> ( ( ( ph /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = P ) /\ ( ps /\ ( ( A ^ 2 ) + ( C ^ 2 ) ) = P ) ) -> B = C ) ) |
13 |
12
|
3expb |
|- ( ( A e. NN0 /\ ( B e. NN0 /\ C e. NN0 ) ) -> ( ( ( ph /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = P ) /\ ( ps /\ ( ( A ^ 2 ) + ( C ^ 2 ) ) = P ) ) -> B = C ) ) |