Step |
Hyp |
Ref |
Expression |
1 |
|
2sqreulem4.1 |
|- ( ph <-> ( ps /\ ( ( a ^ 2 ) + ( b ^ 2 ) ) = P ) ) |
2 |
|
2sqreulem3 |
|- ( ( a e. NN0 /\ ( b e. NN0 /\ c e. NN0 ) ) -> ( ( ( ps /\ ( ( a ^ 2 ) + ( b ^ 2 ) ) = P ) /\ ( [. c / b ]. ps /\ ( ( a ^ 2 ) + ( c ^ 2 ) ) = P ) ) -> b = c ) ) |
3 |
2
|
ralrimivva |
|- ( a e. NN0 -> A. b e. NN0 A. c e. NN0 ( ( ( ps /\ ( ( a ^ 2 ) + ( b ^ 2 ) ) = P ) /\ ( [. c / b ]. ps /\ ( ( a ^ 2 ) + ( c ^ 2 ) ) = P ) ) -> b = c ) ) |
4 |
1
|
rmobii |
|- ( E* b e. NN0 ph <-> E* b e. NN0 ( ps /\ ( ( a ^ 2 ) + ( b ^ 2 ) ) = P ) ) |
5 |
|
nfcv |
|- F/_ b NN0 |
6 |
|
nfcv |
|- F/_ c NN0 |
7 |
|
nfsbc1v |
|- F/ b [. c / b ]. ps |
8 |
|
nfv |
|- F/ b ( ( a ^ 2 ) + ( c ^ 2 ) ) = P |
9 |
7 8
|
nfan |
|- F/ b ( [. c / b ]. ps /\ ( ( a ^ 2 ) + ( c ^ 2 ) ) = P ) |
10 |
|
sbceq1a |
|- ( b = c -> ( ps <-> [. c / b ]. ps ) ) |
11 |
|
oveq1 |
|- ( b = c -> ( b ^ 2 ) = ( c ^ 2 ) ) |
12 |
11
|
oveq2d |
|- ( b = c -> ( ( a ^ 2 ) + ( b ^ 2 ) ) = ( ( a ^ 2 ) + ( c ^ 2 ) ) ) |
13 |
12
|
eqeq1d |
|- ( b = c -> ( ( ( a ^ 2 ) + ( b ^ 2 ) ) = P <-> ( ( a ^ 2 ) + ( c ^ 2 ) ) = P ) ) |
14 |
10 13
|
anbi12d |
|- ( b = c -> ( ( ps /\ ( ( a ^ 2 ) + ( b ^ 2 ) ) = P ) <-> ( [. c / b ]. ps /\ ( ( a ^ 2 ) + ( c ^ 2 ) ) = P ) ) ) |
15 |
5 6 9 14
|
rmo4f |
|- ( E* b e. NN0 ( ps /\ ( ( a ^ 2 ) + ( b ^ 2 ) ) = P ) <-> A. b e. NN0 A. c e. NN0 ( ( ( ps /\ ( ( a ^ 2 ) + ( b ^ 2 ) ) = P ) /\ ( [. c / b ]. ps /\ ( ( a ^ 2 ) + ( c ^ 2 ) ) = P ) ) -> b = c ) ) |
16 |
4 15
|
bitri |
|- ( E* b e. NN0 ph <-> A. b e. NN0 A. c e. NN0 ( ( ( ps /\ ( ( a ^ 2 ) + ( b ^ 2 ) ) = P ) /\ ( [. c / b ]. ps /\ ( ( a ^ 2 ) + ( c ^ 2 ) ) = P ) ) -> b = c ) ) |
17 |
3 16
|
sylibr |
|- ( a e. NN0 -> E* b e. NN0 ph ) |
18 |
17
|
rgen |
|- A. a e. NN0 E* b e. NN0 ph |