| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2sqreulem4.1 |  |-  ( ph <-> ( ps /\ ( ( a ^ 2 ) + ( b ^ 2 ) ) = P ) ) | 
						
							| 2 |  | nnssnn0 |  |-  NN C_ NN0 | 
						
							| 3 | 1 | 2sqreulem4 |  |-  A. a e. NN0 E* b e. NN0 ph | 
						
							| 4 |  | nfcv |  |-  F/_ b NN | 
						
							| 5 |  | nfcv |  |-  F/_ b NN0 | 
						
							| 6 | 4 5 | ssrmof |  |-  ( NN C_ NN0 -> ( E* b e. NN0 ph -> E* b e. NN ph ) ) | 
						
							| 7 | 6 | ralimdv |  |-  ( NN C_ NN0 -> ( A. a e. NN0 E* b e. NN0 ph -> A. a e. NN0 E* b e. NN ph ) ) | 
						
							| 8 | 2 3 7 | mp2 |  |-  A. a e. NN0 E* b e. NN ph | 
						
							| 9 |  | ssralv |  |-  ( NN C_ NN0 -> ( A. a e. NN0 E* b e. NN ph -> A. a e. NN E* b e. NN ph ) ) | 
						
							| 10 | 2 8 9 | mp2 |  |-  A. a e. NN E* b e. NN ph |