Metamath Proof Explorer


Theorem 2stdpc4

Description: A double specialization using explicit substitution. This is Theorem PM*11.1 in WhiteheadRussell p. 159. See stdpc4 for the analogous single specialization. See 2sp for another double specialization. (Contributed by Andrew Salmon, 24-May-2011) (Revised by BJ, 21-Oct-2018)

Ref Expression
Assertion 2stdpc4
|- ( A. x A. y ph -> [ z / x ] [ w / y ] ph )

Proof

Step Hyp Ref Expression
1 stdpc4
 |-  ( A. y ph -> [ w / y ] ph )
2 1 alimi
 |-  ( A. x A. y ph -> A. x [ w / y ] ph )
3 stdpc4
 |-  ( A. x [ w / y ] ph -> [ z / x ] [ w / y ] ph )
4 2 3 syl
 |-  ( A. x A. y ph -> [ z / x ] [ w / y ] ph )