Metamath Proof Explorer


Theorem 2strop1

Description: The other slot of a constructed two-slot structure. Version of 2strop not depending on the hard-coded index value of the base set. (Contributed by AV, 22-Sep-2020)

Ref Expression
Hypotheses 2str1.g
|- G = { <. ( Base ` ndx ) , B >. , <. N , .+ >. }
2str1.b
|- ( Base ` ndx ) < N
2str1.n
|- N e. NN
2str1.e
|- E = Slot N
Assertion 2strop1
|- ( .+ e. V -> .+ = ( E ` G ) )

Proof

Step Hyp Ref Expression
1 2str1.g
 |-  G = { <. ( Base ` ndx ) , B >. , <. N , .+ >. }
2 2str1.b
 |-  ( Base ` ndx ) < N
3 2str1.n
 |-  N e. NN
4 2str1.e
 |-  E = Slot N
5 1 2 3 2strstr1
 |-  G Struct <. ( Base ` ndx ) , N >.
6 4 3 ndxid
 |-  E = Slot ( E ` ndx )
7 snsspr2
 |-  { <. N , .+ >. } C_ { <. ( Base ` ndx ) , B >. , <. N , .+ >. }
8 4 3 ndxarg
 |-  ( E ` ndx ) = N
9 8 opeq1i
 |-  <. ( E ` ndx ) , .+ >. = <. N , .+ >.
10 9 sneqi
 |-  { <. ( E ` ndx ) , .+ >. } = { <. N , .+ >. }
11 7 10 1 3sstr4i
 |-  { <. ( E ` ndx ) , .+ >. } C_ G
12 5 6 11 strfv
 |-  ( .+ e. V -> .+ = ( E ` G ) )