| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2str1.g |
|- G = { <. ( Base ` ndx ) , B >. , <. N , .+ >. } |
| 2 |
|
2str1.b |
|- ( Base ` ndx ) < N |
| 3 |
|
2str1.n |
|- N e. NN |
| 4 |
|
2str1.e |
|- E = Slot N |
| 5 |
1 2 3
|
2strstr1 |
|- G Struct <. ( Base ` ndx ) , N >. |
| 6 |
4 3
|
ndxid |
|- E = Slot ( E ` ndx ) |
| 7 |
|
snsspr2 |
|- { <. N , .+ >. } C_ { <. ( Base ` ndx ) , B >. , <. N , .+ >. } |
| 8 |
4 3
|
ndxarg |
|- ( E ` ndx ) = N |
| 9 |
8
|
opeq1i |
|- <. ( E ` ndx ) , .+ >. = <. N , .+ >. |
| 10 |
9
|
sneqi |
|- { <. ( E ` ndx ) , .+ >. } = { <. N , .+ >. } |
| 11 |
7 10 1
|
3sstr4i |
|- { <. ( E ` ndx ) , .+ >. } C_ G |
| 12 |
5 6 11
|
strfv |
|- ( .+ e. V -> .+ = ( E ` G ) ) |