| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2str1.g |
|- G = { <. ( Base ` ndx ) , B >. , <. N , .+ >. } |
| 2 |
|
2str1.b |
|- ( Base ` ndx ) < N |
| 3 |
|
2str1.n |
|- N e. NN |
| 4 |
|
eqid |
|- Slot N = Slot N |
| 5 |
4 3
|
ndxarg |
|- ( Slot N ` ndx ) = N |
| 6 |
5
|
eqcomi |
|- N = ( Slot N ` ndx ) |
| 7 |
6
|
opeq1i |
|- <. N , .+ >. = <. ( Slot N ` ndx ) , .+ >. |
| 8 |
7
|
preq2i |
|- { <. ( Base ` ndx ) , B >. , <. N , .+ >. } = { <. ( Base ` ndx ) , B >. , <. ( Slot N ` ndx ) , .+ >. } |
| 9 |
1 8
|
eqtri |
|- G = { <. ( Base ` ndx ) , B >. , <. ( Slot N ` ndx ) , .+ >. } |
| 10 |
|
basendx |
|- ( Base ` ndx ) = 1 |
| 11 |
10 2
|
eqbrtrri |
|- 1 < N |
| 12 |
9 4 11 3
|
2strstr |
|- G Struct <. 1 , N >. |
| 13 |
10
|
opeq1i |
|- <. ( Base ` ndx ) , N >. = <. 1 , N >. |
| 14 |
12 13
|
breqtrri |
|- G Struct <. ( Base ` ndx ) , N >. |