Description: Equality deduction for double sum. (Contributed by NM, 3-Jan-2006) (Revised by Mario Carneiro, 31-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 2sumeq2dv.1 | |- ( ( ph /\ j e. A /\ k e. B ) -> C = D ) | |
| Assertion | 2sumeq2dv | |- ( ph -> sum_ j e. A sum_ k e. B C = sum_ j e. A sum_ k e. B D ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 2sumeq2dv.1 | |- ( ( ph /\ j e. A /\ k e. B ) -> C = D ) | |
| 2 | 1 | 3expa | |- ( ( ( ph /\ j e. A ) /\ k e. B ) -> C = D ) | 
| 3 | 2 | sumeq2dv | |- ( ( ph /\ j e. A ) -> sum_ k e. B C = sum_ k e. B D ) | 
| 4 | 3 | sumeq2dv | |- ( ph -> sum_ j e. A sum_ k e. B C = sum_ j e. A sum_ k e. B D ) |