Metamath Proof Explorer


Theorem 2sumeq2dv

Description: Equality deduction for double sum. (Contributed by NM, 3-Jan-2006) (Revised by Mario Carneiro, 31-Jan-2014)

Ref Expression
Hypothesis 2sumeq2dv.1
|- ( ( ph /\ j e. A /\ k e. B ) -> C = D )
Assertion 2sumeq2dv
|- ( ph -> sum_ j e. A sum_ k e. B C = sum_ j e. A sum_ k e. B D )

Proof

Step Hyp Ref Expression
1 2sumeq2dv.1
 |-  ( ( ph /\ j e. A /\ k e. B ) -> C = D )
2 1 3expa
 |-  ( ( ( ph /\ j e. A ) /\ k e. B ) -> C = D )
3 2 sumeq2dv
 |-  ( ( ph /\ j e. A ) -> sum_ k e. B C = sum_ k e. B D )
4 3 sumeq2dv
 |-  ( ph -> sum_ j e. A sum_ k e. B C = sum_ j e. A sum_ k e. B D )