| Step |
Hyp |
Ref |
Expression |
| 1 |
|
termoeu1.c |
|- ( ph -> C e. Cat ) |
| 2 |
|
termoeu1.a |
|- ( ph -> A e. ( TermO ` C ) ) |
| 3 |
|
termoeu1.b |
|- ( ph -> B e. ( TermO ` C ) ) |
| 4 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
| 5 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
| 6 |
|
eqid |
|- ( comp ` C ) = ( comp ` C ) |
| 7 |
1
|
3ad2ant1 |
|- ( ( ph /\ G e. ( B ( Hom ` C ) A ) /\ F e. ( A ( Hom ` C ) B ) ) -> C e. Cat ) |
| 8 |
|
termoo |
|- ( C e. Cat -> ( A e. ( TermO ` C ) -> A e. ( Base ` C ) ) ) |
| 9 |
1 2 8
|
sylc |
|- ( ph -> A e. ( Base ` C ) ) |
| 10 |
9
|
3ad2ant1 |
|- ( ( ph /\ G e. ( B ( Hom ` C ) A ) /\ F e. ( A ( Hom ` C ) B ) ) -> A e. ( Base ` C ) ) |
| 11 |
|
termoo |
|- ( C e. Cat -> ( B e. ( TermO ` C ) -> B e. ( Base ` C ) ) ) |
| 12 |
1 3 11
|
sylc |
|- ( ph -> B e. ( Base ` C ) ) |
| 13 |
12
|
3ad2ant1 |
|- ( ( ph /\ G e. ( B ( Hom ` C ) A ) /\ F e. ( A ( Hom ` C ) B ) ) -> B e. ( Base ` C ) ) |
| 14 |
|
simp3 |
|- ( ( ph /\ G e. ( B ( Hom ` C ) A ) /\ F e. ( A ( Hom ` C ) B ) ) -> F e. ( A ( Hom ` C ) B ) ) |
| 15 |
|
simp2 |
|- ( ( ph /\ G e. ( B ( Hom ` C ) A ) /\ F e. ( A ( Hom ` C ) B ) ) -> G e. ( B ( Hom ` C ) A ) ) |
| 16 |
4 5 6 7 10 13 10 14 15
|
catcocl |
|- ( ( ph /\ G e. ( B ( Hom ` C ) A ) /\ F e. ( A ( Hom ` C ) B ) ) -> ( G ( <. A , B >. ( comp ` C ) A ) F ) e. ( A ( Hom ` C ) A ) ) |
| 17 |
4 5 1
|
termoid |
|- ( ( ph /\ A e. ( TermO ` C ) ) -> ( A ( Hom ` C ) A ) = { ( ( Id ` C ) ` A ) } ) |
| 18 |
2 17
|
mpdan |
|- ( ph -> ( A ( Hom ` C ) A ) = { ( ( Id ` C ) ` A ) } ) |
| 19 |
18
|
3ad2ant1 |
|- ( ( ph /\ G e. ( B ( Hom ` C ) A ) /\ F e. ( A ( Hom ` C ) B ) ) -> ( A ( Hom ` C ) A ) = { ( ( Id ` C ) ` A ) } ) |
| 20 |
19
|
eleq2d |
|- ( ( ph /\ G e. ( B ( Hom ` C ) A ) /\ F e. ( A ( Hom ` C ) B ) ) -> ( ( G ( <. A , B >. ( comp ` C ) A ) F ) e. ( A ( Hom ` C ) A ) <-> ( G ( <. A , B >. ( comp ` C ) A ) F ) e. { ( ( Id ` C ) ` A ) } ) ) |
| 21 |
|
elsni |
|- ( ( G ( <. A , B >. ( comp ` C ) A ) F ) e. { ( ( Id ` C ) ` A ) } -> ( G ( <. A , B >. ( comp ` C ) A ) F ) = ( ( Id ` C ) ` A ) ) |
| 22 |
20 21
|
biimtrdi |
|- ( ( ph /\ G e. ( B ( Hom ` C ) A ) /\ F e. ( A ( Hom ` C ) B ) ) -> ( ( G ( <. A , B >. ( comp ` C ) A ) F ) e. ( A ( Hom ` C ) A ) -> ( G ( <. A , B >. ( comp ` C ) A ) F ) = ( ( Id ` C ) ` A ) ) ) |
| 23 |
16 22
|
mpd |
|- ( ( ph /\ G e. ( B ( Hom ` C ) A ) /\ F e. ( A ( Hom ` C ) B ) ) -> ( G ( <. A , B >. ( comp ` C ) A ) F ) = ( ( Id ` C ) ` A ) ) |
| 24 |
|
eqid |
|- ( Id ` C ) = ( Id ` C ) |
| 25 |
|
eqid |
|- ( Sect ` C ) = ( Sect ` C ) |
| 26 |
4 5 6 24 25 7 10 13 14 15
|
issect2 |
|- ( ( ph /\ G e. ( B ( Hom ` C ) A ) /\ F e. ( A ( Hom ` C ) B ) ) -> ( F ( A ( Sect ` C ) B ) G <-> ( G ( <. A , B >. ( comp ` C ) A ) F ) = ( ( Id ` C ) ` A ) ) ) |
| 27 |
23 26
|
mpbird |
|- ( ( ph /\ G e. ( B ( Hom ` C ) A ) /\ F e. ( A ( Hom ` C ) B ) ) -> F ( A ( Sect ` C ) B ) G ) |
| 28 |
4 5 6 7 13 10 13 15 14
|
catcocl |
|- ( ( ph /\ G e. ( B ( Hom ` C ) A ) /\ F e. ( A ( Hom ` C ) B ) ) -> ( F ( <. B , A >. ( comp ` C ) B ) G ) e. ( B ( Hom ` C ) B ) ) |
| 29 |
4 5 1
|
termoid |
|- ( ( ph /\ B e. ( TermO ` C ) ) -> ( B ( Hom ` C ) B ) = { ( ( Id ` C ) ` B ) } ) |
| 30 |
3 29
|
mpdan |
|- ( ph -> ( B ( Hom ` C ) B ) = { ( ( Id ` C ) ` B ) } ) |
| 31 |
30
|
3ad2ant1 |
|- ( ( ph /\ G e. ( B ( Hom ` C ) A ) /\ F e. ( A ( Hom ` C ) B ) ) -> ( B ( Hom ` C ) B ) = { ( ( Id ` C ) ` B ) } ) |
| 32 |
31
|
eleq2d |
|- ( ( ph /\ G e. ( B ( Hom ` C ) A ) /\ F e. ( A ( Hom ` C ) B ) ) -> ( ( F ( <. B , A >. ( comp ` C ) B ) G ) e. ( B ( Hom ` C ) B ) <-> ( F ( <. B , A >. ( comp ` C ) B ) G ) e. { ( ( Id ` C ) ` B ) } ) ) |
| 33 |
|
elsni |
|- ( ( F ( <. B , A >. ( comp ` C ) B ) G ) e. { ( ( Id ` C ) ` B ) } -> ( F ( <. B , A >. ( comp ` C ) B ) G ) = ( ( Id ` C ) ` B ) ) |
| 34 |
32 33
|
biimtrdi |
|- ( ( ph /\ G e. ( B ( Hom ` C ) A ) /\ F e. ( A ( Hom ` C ) B ) ) -> ( ( F ( <. B , A >. ( comp ` C ) B ) G ) e. ( B ( Hom ` C ) B ) -> ( F ( <. B , A >. ( comp ` C ) B ) G ) = ( ( Id ` C ) ` B ) ) ) |
| 35 |
28 34
|
mpd |
|- ( ( ph /\ G e. ( B ( Hom ` C ) A ) /\ F e. ( A ( Hom ` C ) B ) ) -> ( F ( <. B , A >. ( comp ` C ) B ) G ) = ( ( Id ` C ) ` B ) ) |
| 36 |
4 5 6 24 25 7 13 10 15 14
|
issect2 |
|- ( ( ph /\ G e. ( B ( Hom ` C ) A ) /\ F e. ( A ( Hom ` C ) B ) ) -> ( G ( B ( Sect ` C ) A ) F <-> ( F ( <. B , A >. ( comp ` C ) B ) G ) = ( ( Id ` C ) ` B ) ) ) |
| 37 |
35 36
|
mpbird |
|- ( ( ph /\ G e. ( B ( Hom ` C ) A ) /\ F e. ( A ( Hom ` C ) B ) ) -> G ( B ( Sect ` C ) A ) F ) |
| 38 |
|
eqid |
|- ( Inv ` C ) = ( Inv ` C ) |
| 39 |
4 38 1 9 12 25
|
isinv |
|- ( ph -> ( F ( A ( Inv ` C ) B ) G <-> ( F ( A ( Sect ` C ) B ) G /\ G ( B ( Sect ` C ) A ) F ) ) ) |
| 40 |
39
|
3ad2ant1 |
|- ( ( ph /\ G e. ( B ( Hom ` C ) A ) /\ F e. ( A ( Hom ` C ) B ) ) -> ( F ( A ( Inv ` C ) B ) G <-> ( F ( A ( Sect ` C ) B ) G /\ G ( B ( Sect ` C ) A ) F ) ) ) |
| 41 |
27 37 40
|
mpbir2and |
|- ( ( ph /\ G e. ( B ( Hom ` C ) A ) /\ F e. ( A ( Hom ` C ) B ) ) -> F ( A ( Inv ` C ) B ) G ) |