Metamath Proof Explorer


Theorem 2teven

Description: A number which is twice an integer is even. (Contributed by AV, 16-Jul-2021)

Ref Expression
Assertion 2teven
|- ( ( A e. ZZ /\ B = ( 2 x. A ) ) -> 2 || B )

Proof

Step Hyp Ref Expression
1 2z
 |-  2 e. ZZ
2 dvdsmul1
 |-  ( ( 2 e. ZZ /\ A e. ZZ ) -> 2 || ( 2 x. A ) )
3 1 2 mpan
 |-  ( A e. ZZ -> 2 || ( 2 x. A ) )
4 3 adantr
 |-  ( ( A e. ZZ /\ B = ( 2 x. A ) ) -> 2 || ( 2 x. A ) )
5 breq2
 |-  ( B = ( 2 x. A ) -> ( 2 || B <-> 2 || ( 2 x. A ) ) )
6 5 adantl
 |-  ( ( A e. ZZ /\ B = ( 2 x. A ) ) -> ( 2 || B <-> 2 || ( 2 x. A ) ) )
7 4 6 mpbird
 |-  ( ( A e. ZZ /\ B = ( 2 x. A ) ) -> 2 || B )