Step |
Hyp |
Ref |
Expression |
1 |
|
2z |
|- 2 e. ZZ |
2 |
1
|
a1i |
|- ( N e. ZZ -> 2 e. ZZ ) |
3 |
|
id |
|- ( N e. ZZ -> N e. ZZ ) |
4 |
2 3
|
zmulcld |
|- ( N e. ZZ -> ( 2 x. N ) e. ZZ ) |
5 |
4
|
peano2zd |
|- ( N e. ZZ -> ( ( 2 x. N ) + 1 ) e. ZZ ) |
6 |
5
|
zred |
|- ( N e. ZZ -> ( ( 2 x. N ) + 1 ) e. RR ) |
7 |
|
2rp |
|- 2 e. RR+ |
8 |
7
|
a1i |
|- ( N e. ZZ -> 2 e. RR+ ) |
9 |
6 8
|
ge0divd |
|- ( N e. ZZ -> ( 0 <_ ( ( 2 x. N ) + 1 ) <-> 0 <_ ( ( ( 2 x. N ) + 1 ) / 2 ) ) ) |
10 |
4
|
zcnd |
|- ( N e. ZZ -> ( 2 x. N ) e. CC ) |
11 |
|
1cnd |
|- ( N e. ZZ -> 1 e. CC ) |
12 |
|
2cnne0 |
|- ( 2 e. CC /\ 2 =/= 0 ) |
13 |
12
|
a1i |
|- ( N e. ZZ -> ( 2 e. CC /\ 2 =/= 0 ) ) |
14 |
|
divdir |
|- ( ( ( 2 x. N ) e. CC /\ 1 e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( ( 2 x. N ) + 1 ) / 2 ) = ( ( ( 2 x. N ) / 2 ) + ( 1 / 2 ) ) ) |
15 |
10 11 13 14
|
syl3anc |
|- ( N e. ZZ -> ( ( ( 2 x. N ) + 1 ) / 2 ) = ( ( ( 2 x. N ) / 2 ) + ( 1 / 2 ) ) ) |
16 |
|
zcn |
|- ( N e. ZZ -> N e. CC ) |
17 |
|
2cnd |
|- ( N e. ZZ -> 2 e. CC ) |
18 |
|
2ne0 |
|- 2 =/= 0 |
19 |
18
|
a1i |
|- ( N e. ZZ -> 2 =/= 0 ) |
20 |
16 17 19
|
divcan3d |
|- ( N e. ZZ -> ( ( 2 x. N ) / 2 ) = N ) |
21 |
20
|
oveq1d |
|- ( N e. ZZ -> ( ( ( 2 x. N ) / 2 ) + ( 1 / 2 ) ) = ( N + ( 1 / 2 ) ) ) |
22 |
15 21
|
eqtrd |
|- ( N e. ZZ -> ( ( ( 2 x. N ) + 1 ) / 2 ) = ( N + ( 1 / 2 ) ) ) |
23 |
22
|
breq2d |
|- ( N e. ZZ -> ( 0 <_ ( ( ( 2 x. N ) + 1 ) / 2 ) <-> 0 <_ ( N + ( 1 / 2 ) ) ) ) |
24 |
|
zre |
|- ( N e. ZZ -> N e. RR ) |
25 |
|
halfre |
|- ( 1 / 2 ) e. RR |
26 |
25
|
a1i |
|- ( N e. ZZ -> ( 1 / 2 ) e. RR ) |
27 |
24 26
|
readdcld |
|- ( N e. ZZ -> ( N + ( 1 / 2 ) ) e. RR ) |
28 |
|
halfge0 |
|- 0 <_ ( 1 / 2 ) |
29 |
24 26
|
addge01d |
|- ( N e. ZZ -> ( 0 <_ ( 1 / 2 ) <-> N <_ ( N + ( 1 / 2 ) ) ) ) |
30 |
28 29
|
mpbii |
|- ( N e. ZZ -> N <_ ( N + ( 1 / 2 ) ) ) |
31 |
|
1red |
|- ( N e. ZZ -> 1 e. RR ) |
32 |
|
halflt1 |
|- ( 1 / 2 ) < 1 |
33 |
32
|
a1i |
|- ( N e. ZZ -> ( 1 / 2 ) < 1 ) |
34 |
26 31 24 33
|
ltadd2dd |
|- ( N e. ZZ -> ( N + ( 1 / 2 ) ) < ( N + 1 ) ) |
35 |
|
btwnzge0 |
|- ( ( ( ( N + ( 1 / 2 ) ) e. RR /\ N e. ZZ ) /\ ( N <_ ( N + ( 1 / 2 ) ) /\ ( N + ( 1 / 2 ) ) < ( N + 1 ) ) ) -> ( 0 <_ ( N + ( 1 / 2 ) ) <-> 0 <_ N ) ) |
36 |
27 3 30 34 35
|
syl22anc |
|- ( N e. ZZ -> ( 0 <_ ( N + ( 1 / 2 ) ) <-> 0 <_ N ) ) |
37 |
9 23 36
|
3bitrd |
|- ( N e. ZZ -> ( 0 <_ ( ( 2 x. N ) + 1 ) <-> 0 <_ N ) ) |