| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2z |  |-  2 e. ZZ | 
						
							| 2 | 1 | a1i |  |-  ( N e. ZZ -> 2 e. ZZ ) | 
						
							| 3 |  | id |  |-  ( N e. ZZ -> N e. ZZ ) | 
						
							| 4 | 2 3 | zmulcld |  |-  ( N e. ZZ -> ( 2 x. N ) e. ZZ ) | 
						
							| 5 | 4 | peano2zd |  |-  ( N e. ZZ -> ( ( 2 x. N ) + 1 ) e. ZZ ) | 
						
							| 6 | 5 | zred |  |-  ( N e. ZZ -> ( ( 2 x. N ) + 1 ) e. RR ) | 
						
							| 7 |  | 2rp |  |-  2 e. RR+ | 
						
							| 8 | 7 | a1i |  |-  ( N e. ZZ -> 2 e. RR+ ) | 
						
							| 9 | 6 8 | ge0divd |  |-  ( N e. ZZ -> ( 0 <_ ( ( 2 x. N ) + 1 ) <-> 0 <_ ( ( ( 2 x. N ) + 1 ) / 2 ) ) ) | 
						
							| 10 | 4 | zcnd |  |-  ( N e. ZZ -> ( 2 x. N ) e. CC ) | 
						
							| 11 |  | 1cnd |  |-  ( N e. ZZ -> 1 e. CC ) | 
						
							| 12 |  | 2cnne0 |  |-  ( 2 e. CC /\ 2 =/= 0 ) | 
						
							| 13 | 12 | a1i |  |-  ( N e. ZZ -> ( 2 e. CC /\ 2 =/= 0 ) ) | 
						
							| 14 |  | divdir |  |-  ( ( ( 2 x. N ) e. CC /\ 1 e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( ( 2 x. N ) + 1 ) / 2 ) = ( ( ( 2 x. N ) / 2 ) + ( 1 / 2 ) ) ) | 
						
							| 15 | 10 11 13 14 | syl3anc |  |-  ( N e. ZZ -> ( ( ( 2 x. N ) + 1 ) / 2 ) = ( ( ( 2 x. N ) / 2 ) + ( 1 / 2 ) ) ) | 
						
							| 16 |  | zcn |  |-  ( N e. ZZ -> N e. CC ) | 
						
							| 17 |  | 2cnd |  |-  ( N e. ZZ -> 2 e. CC ) | 
						
							| 18 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 19 | 18 | a1i |  |-  ( N e. ZZ -> 2 =/= 0 ) | 
						
							| 20 | 16 17 19 | divcan3d |  |-  ( N e. ZZ -> ( ( 2 x. N ) / 2 ) = N ) | 
						
							| 21 | 20 | oveq1d |  |-  ( N e. ZZ -> ( ( ( 2 x. N ) / 2 ) + ( 1 / 2 ) ) = ( N + ( 1 / 2 ) ) ) | 
						
							| 22 | 15 21 | eqtrd |  |-  ( N e. ZZ -> ( ( ( 2 x. N ) + 1 ) / 2 ) = ( N + ( 1 / 2 ) ) ) | 
						
							| 23 | 22 | breq2d |  |-  ( N e. ZZ -> ( 0 <_ ( ( ( 2 x. N ) + 1 ) / 2 ) <-> 0 <_ ( N + ( 1 / 2 ) ) ) ) | 
						
							| 24 |  | zre |  |-  ( N e. ZZ -> N e. RR ) | 
						
							| 25 |  | halfre |  |-  ( 1 / 2 ) e. RR | 
						
							| 26 | 25 | a1i |  |-  ( N e. ZZ -> ( 1 / 2 ) e. RR ) | 
						
							| 27 | 24 26 | readdcld |  |-  ( N e. ZZ -> ( N + ( 1 / 2 ) ) e. RR ) | 
						
							| 28 |  | halfge0 |  |-  0 <_ ( 1 / 2 ) | 
						
							| 29 | 24 26 | addge01d |  |-  ( N e. ZZ -> ( 0 <_ ( 1 / 2 ) <-> N <_ ( N + ( 1 / 2 ) ) ) ) | 
						
							| 30 | 28 29 | mpbii |  |-  ( N e. ZZ -> N <_ ( N + ( 1 / 2 ) ) ) | 
						
							| 31 |  | 1red |  |-  ( N e. ZZ -> 1 e. RR ) | 
						
							| 32 |  | halflt1 |  |-  ( 1 / 2 ) < 1 | 
						
							| 33 | 32 | a1i |  |-  ( N e. ZZ -> ( 1 / 2 ) < 1 ) | 
						
							| 34 | 26 31 24 33 | ltadd2dd |  |-  ( N e. ZZ -> ( N + ( 1 / 2 ) ) < ( N + 1 ) ) | 
						
							| 35 |  | btwnzge0 |  |-  ( ( ( ( N + ( 1 / 2 ) ) e. RR /\ N e. ZZ ) /\ ( N <_ ( N + ( 1 / 2 ) ) /\ ( N + ( 1 / 2 ) ) < ( N + 1 ) ) ) -> ( 0 <_ ( N + ( 1 / 2 ) ) <-> 0 <_ N ) ) | 
						
							| 36 | 27 3 30 34 35 | syl22anc |  |-  ( N e. ZZ -> ( 0 <_ ( N + ( 1 / 2 ) ) <-> 0 <_ N ) ) | 
						
							| 37 | 9 23 36 | 3bitrd |  |-  ( N e. ZZ -> ( 0 <_ ( ( 2 x. N ) + 1 ) <-> 0 <_ N ) ) |