| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2wlkd.p |  |-  P = <" A B C "> | 
						
							| 2 |  | 2wlkd.f |  |-  F = <" J K "> | 
						
							| 3 |  | 2wlkd.s |  |-  ( ph -> ( A e. V /\ B e. V /\ C e. V ) ) | 
						
							| 4 |  | 2wlkd.n |  |-  ( ph -> ( A =/= B /\ B =/= C ) ) | 
						
							| 5 |  | 2wlkd.e |  |-  ( ph -> ( { A , B } C_ ( I ` J ) /\ { B , C } C_ ( I ` K ) ) ) | 
						
							| 6 |  | 2wlkd.v |  |-  V = ( Vtx ` G ) | 
						
							| 7 |  | 2wlkd.i |  |-  I = ( iEdg ` G ) | 
						
							| 8 |  | 2trld.n |  |-  ( ph -> J =/= K ) | 
						
							| 9 | 1 2 3 4 5 6 7 | 2wlkd |  |-  ( ph -> F ( Walks ` G ) P ) | 
						
							| 10 | 1 2 3 4 5 | 2wlkdlem7 |  |-  ( ph -> ( J e. _V /\ K e. _V ) ) | 
						
							| 11 |  | df-3an |  |-  ( ( J e. _V /\ K e. _V /\ J =/= K ) <-> ( ( J e. _V /\ K e. _V ) /\ J =/= K ) ) | 
						
							| 12 | 10 8 11 | sylanbrc |  |-  ( ph -> ( J e. _V /\ K e. _V /\ J =/= K ) ) | 
						
							| 13 |  | funcnvs2 |  |-  ( ( J e. _V /\ K e. _V /\ J =/= K ) -> Fun `' <" J K "> ) | 
						
							| 14 | 12 13 | syl |  |-  ( ph -> Fun `' <" J K "> ) | 
						
							| 15 | 2 | cnveqi |  |-  `' F = `' <" J K "> | 
						
							| 16 | 15 | funeqi |  |-  ( Fun `' F <-> Fun `' <" J K "> ) | 
						
							| 17 | 14 16 | sylibr |  |-  ( ph -> Fun `' F ) | 
						
							| 18 |  | istrl |  |-  ( F ( Trails ` G ) P <-> ( F ( Walks ` G ) P /\ Fun `' F ) ) | 
						
							| 19 | 9 17 18 | sylanbrc |  |-  ( ph -> F ( Trails ` G ) P ) |